精英家教网 > 高中数学 > 题目详情

【题目】一个圆柱形圆木的底面半径为1 m,长为10 m,将此圆木沿轴所在的平面剖成两部分.现要把其中一部分加工成直四棱柱木梁,长度保持不变,底面为等腰梯形ABCD如图所示,其中O为圆心,C,D在半圆上,设,木梁的体积为V单位:m3,表面积为S单位:m2

1求V关于θ的函数表达式;

2的值,使体积V最大;

3问当木梁的体积V最大时,其表面积S是否也最大?请说明理由.

【答案】1 23

【解析】1.

.

2

,得,或.∵,∴

时,为增函数;

时,为减函数.

∴当时,体积V最大.

3是,理由如下:

木梁的侧面积

,则

∴当,即时,最大.又由2时,取得最大值,所以时,木梁的表面积S最大.

综上,当木梁的体积V最大时,其表面积S也最大.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】中,若成等差数列,且三个内角也成等差数列,则的形状为__________

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数).

1时,求函数上的最大值和最小值;

2时,是否存在实数,当是自然对数底时,函数的最小值是3,若存在,求出的值;若不存在,说明理由;

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知A(2,0),B(0,2),,O为坐标原点.

(1),求sin 2θ的值;

(2)若,且θ∈(-π,0),求的夹角.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】一个袋中装有个形状大小完全相同的小球,球的编号分别为

)若从袋中每次随机抽取个球,有放回的抽取,求取出的两个球编号之和为的概率.

)若从袋中每次随机抽取个球,有放回的抽取次,求恰有次抽到号球的概率.

)若一次从袋中随机抽取个球,求球的最大编号为的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,已知正方体ABCDA1B1C1D1的棱长为3MN分别是棱AA1AB上的点,且AMAN1.

1)证明:MNCD1四点共面;

2)平面MNCD1将此正方体分为两部分,求这两部分的体积之比.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在平面直角坐标系中,圆轴的正半轴交于点,以点为圆心的圆与圆交于两点.

(1)当时,求的长;

(2)当变化时,求的最小值;

(3)过点的直线与圆A切于点,与圆分别交于点,若点的中点,试求直线的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】近几年,京津冀等地数城市指数“爆表”,尤其2015年污染最重.为了探究车流量与PM2.5的浓度是否相关,现采集到北方某城市2015年12月份某星期星期一到星期日某一时间段车流量与PM2.5的数据如表:

时间

星期一

星期二

星期三

星期四

星期五

星期六

星期日

车流量x(万辆)

1

2

3

4

5

6

7

PM2.5的浓度y(微克/立方米)

28

30

35

41

49

56

62

(Ⅰ)由散点图知yx具有线性相关关系,求y关于x的线性回归方程;

(Ⅱ)(ⅰ)利用(Ⅰ)所求的回归方程,预测该市车流量为8万辆时PM2.5的浓度;

(ⅱ)规定:当一天内PM2.5的浓度平均值在(0,50]内,空气质量等级为优;当一天内PM2.5的浓度平均值在(50,100]内,空气质量等级为良.为使该市某日空气质量为优或者为良,则应控制当天车流量在多少万辆以内?(结果以万辆为单位,保留整数.)

参考公式:回归直线的方程是,其中

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,正三棱柱ABC-A1B1C1的底面边长是2,侧棱长是DAC的中点。

1)求证:B1C∥平面A1BD

2)求二面角A1-BD-A的大小;

3)在线段AA1上是否存在一点E,使得平面B1C1E⊥平面A1BD,若存在,求出AE的长;若不存在,说明理由。

查看答案和解析>>

同步练习册答案