精英家教网 > 高中数学 > 题目详情
设命题p:函数f(x)=x3-ax-1在区间[-1,1]上单调递减命题q:存在x∈R,使等式x2+ax+1=0成立,如果命题p或q为真命题,p且q为假命题,求a的取值范围.
考点:复合命题的真假
专题:简易逻辑
分析:根据题意可知p,q为一真一假,通过导函数先求出p,q为真时a的取值范围,再分类讨论一真一假时,p,q的交集即可求解.
解答: 解:p为真命题?f'(x)=3x2-a≤0在[-1,1]上恒成立?a≥3x2在[-1,1]上恒成立?a≥3
q为真命题?△=a2-4≥0恒成立?a≤-2或a≥2
由题意P和q有且只有一个是真命题p真q假?
a≥3
-2<a<2
?a∈ϕ,
p假q真?
a<3
a≤-2,或a≥2
?a≤-2或2≤a<3
综上所述:a∈(-∞,-2]∪[2,3)
点评:本题考查命题的真假判断和应用,解题时要注意合理地进行等价转化.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

求导:(
x2+1
)′=
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知集合A={0,1},B={x|x2≤4},则A∩B=(  )
A、{0,1}
B、{0,1,2}
C、{x|0≤x<2}
D、{x|0≤x≤2}

查看答案和解析>>

科目:高中数学 来源: 题型:

△ABC中,若
1
a+b
+
1
b+c
=
3
a+b+c
,则B=
 

查看答案和解析>>

科目:高中数学 来源: 题型:

方程|3x-1|=k有两解,则k的范围为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

计算:(
1
tan
α
2
-tan
α
2
)•(1+tanα•tan
α
2
)=
 

查看答案和解析>>

科目:高中数学 来源: 题型:

函数f(x)=
2-x
+
x-2
的定义域是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

若函数f(x)=sin(ωx+φ)(ω>0,0<φ<π)的图象(部分)如图所示,则ω和φ的取值分别是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

设f(x)=
2-
x+3
x+1
的定义域为A,g(x)=lg[(x-a-1)(2a-x)](a<1)的定义域为B.
(Ⅰ)求A、B;
(Ⅱ)若p:x∈A,q:x∈B,¬p是¬q充分不必要条件,求实数a的取值范围.

查看答案和解析>>

同步练习册答案