精英家教网 > 高中数学 > 题目详情

【题目】如图,要设计一张矩形广告,该广告含有大小相等的左右两个矩形栏目(即图中阴影部分),这两栏的面积之和为18000cm2 , 四周空白的宽度为10cm,两栏之间的中缝空白的宽度为5cm.

(1)设矩形栏目宽度为xcm,求矩形广告面积S(x)的表达式
(2)怎样确定广告的高与宽的尺寸(单位:cm),能使矩形广告面积最小?

【答案】
(1)解:设矩形栏目宽度为xcm,高为


(2)解:根据题意得:

等号成立的条件是:x=75,y=120

答:当广告的高为75cm,宽为120cm时,矩形广告的面积最小


【解析】(1)设矩形栏目宽度为xcm,高为 ,利用两栏的面积之和为18000cm2 , 建立方程,即可写出矩形广告面积S(x)的表达式;(2)根据基本不等式的性质求得广告面积的最小值.根据等号成立的条件确定广告的高和宽.
【考点精析】利用基本不等式在最值问题中的应用对题目进行判断即可得到答案,需要熟知用基本不等式求最值时(积定和最小,和定积最大),要注意满足三个条件“一正、二定、三相等”.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】如图,四棱锥的底面是平行四边形,侧面是边长为2的正三角形, , .

(Ⅰ)求证:平面平面

(Ⅱ)设是棱上的点,当平面时,求二面角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=log4(4x+1)+kx(k∈R)是偶函数
(1)求k的值;
(2)设g(x)=log4(a2x a),若函数f(x)与g(x)的图象有且只有一个公共点,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=loga(1﹣x)﹣loga(1+x)(a>0,且a≠1).
(1)求函数f(x)的定义域;
(2)判断f(x)的奇偶性;
(3)求满足不等式f(x)<0的x的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】定义运算则函数f(x)=1*2x的最大值为

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知集合A={x|12﹣5x﹣2x2>0},B={x|x2﹣ax+b≤0}满足A∩B=,A∪B=(﹣4,8],求实数a,b的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知集合A={x||2x﹣1|≤3},集合B={x|x2+(4﹣a)x﹣4a>0},若A∩B=A,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】集合A={x||x+1|<4},B={x|(x﹣1)(x﹣2a)<0}.
(1)求A,B;
(2)若A∩B=B,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知实数x,y满足ax<ay(0<a<1),则下列关系式恒成立的是(  )
A.x3>y3
B.sinx>siny
C.ln(x2+1)>ln(y2+1)
D.

查看答案和解析>>

同步练习册答案