精英家教网 > 高中数学 > 题目详情
若实数x,y满足
x+y-3≥0
x-y-1≤0
y≤2
,则x2+y2的最小值是(  )
A、
5
B、5
C、
3
2
2
D、
9
2
考点:简单线性规划的应用
专题:不等式的解法及应用
分析:作出不等式组对应的平面区域,设z=x2+y2,利用z的几何意义,即可得到结论.
解答: 解:画出满足条件的平面区域,如图示:
设z=x2+y2,则z的几何意义是区域到原点距离,
由图象可知当直线x+y-3=0与圆相切时,此时距离最短,

自原点向直线x+y-3=0作垂线,
得距离d=
|-3|
2
=
3
2
2

∴z=x2+y2的最小值是
9
2

故选:D.
点评:本题主要考查线性规划的应用,利用z的几何意义以及直线和圆的位置关系是解决本题的关键.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

设过点P(2,1)的直线l与x轴、y轴的正半轴分别交于点A、B,O为坐标原点,且△AOB的面积>
9
2
,求直线l的斜率k的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

若f(sinx)=cos2010x,则f(cosx)等于
 

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,空间四边形ABCD中,E为AB的三等分点,即AB=3AE,F为AD的中点,求证:直线EF与平面BCD相交.

查看答案和解析>>

科目:高中数学 来源: 题型:

不等式组
x≥0
x+y≤3
y≥x+1
,表示的平面区域为Ω,直线y=kx+1与区域Ω有公共点,则实数k的取值范围为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知椭圆C:
x2
a2
+
y2
b2
=1(a>b>0)的短半轴长为l,动点M(2,t)(t>0)在直线x=
a2
c
(c为半焦距)上.
(Ⅰ)求椭圆的标准方程;
(Ⅱ)求以OM为直径且被直线3x-4y-5=0截得的弦长为2的圆的方程;
(Ⅲ)设F是椭圆的右焦点,过点F作OM的垂线与以OM为直径的圆交于点N,求证:线段ON的长为定值,并求出这个定值.

查看答案和解析>>

科目:高中数学 来源: 题型:

游乐场中的摩天轮匀速旋转每转一圈需要12分钟,其中心O距地面40.5米,摩天轮的半径为40米,如果你从最低处登上摩天轮,那么你与地面的距离将随时间的变化而变化,以你登上摩天轮的时刻开始计时.
(1)求出你与地面的距离y(米)与时间t(分钟)的函数关系式;
(2)当你第四次距离地面60.5米时,用了多长时间?

查看答案和解析>>

科目:高中数学 来源: 题型:

长方体ABCD-A1B1C1D1中,AB=2,BC=1,AA1=1(利用空间向量求解及证明).
(1)求直线AD1与B1D所成角;
(2)证明:BD1⊥B1C.

查看答案和解析>>

科目:高中数学 来源: 题型:

不等式
x+3
x-1
≥-1的解集为
 

查看答案和解析>>

同步练习册答案