精英家教网 > 高中数学 > 题目详情
已知点A(1,0),定直线l:x=-1,B为l上的一个动点,过B作直线m⊥l,连接AB,作线段AB的垂直平分线n,交直线m于点M.
(1)求点M的轨迹C的方程;
(2)过点N(4,0)作直线h与点M的轨迹C相交于不同的两点P,Q,求证OP⊥OQ(O为坐标原点).

【答案】分析:(1)利用|MA|=|MB|,根据抛物线的定义可知M的轨迹为以A为焦点,l为准线的抛物线.进而求得抛物线的方程.
(2)当x⊥x时,把直线h与抛物线的方程联立求得y,P,Q坐标可得,进而求得KOP=1,KOQ=-1推断出OP⊥OQ;当h与x轴不垂直时,设出直线l的方程,与抛物线的方程联立消去y,利用韦达定理表示出x1?x2,则y1?y2的值可得,进而求得推断出OP⊥OQ.
解答:解:(1)由已知|MA|=|MB|
∴M的轨迹为以A为焦点,l为准线的抛物线.
∴M的轨迹方程为y2=4x.
(2)当h⊥x时,h:x=4由得y=±4
此时,P(4,4),Q(4,-4)
KOP=1,KOQ=-1∴OP⊥OQ
当h与x轴不垂直时,设l:y=k(x-4)
得k2x2-(8k2+4)x+16k2=0
x1?x2=16,
=x1?x2+y1?y2=0
∴OP⊥OQ
点评:本题主要考查了直线与圆锥曲线的关系,抛物线的定义.判断直线垂直的方法一般是利用斜率之积为-1或向量之积为0的方法.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

精英家教网如图,已知点A(-1,0)与点B(1,0),C是圆x2+y2=1上的动点,连接BC并延长至D,使得|CD|=|BC|,求AC与OD的交点P的轨迹方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知点A(-1,0),B(0,2),点P是圆(x-1)2+y2=1上任意一点,则△PAB面积的最大值是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知点A(1,0),B(0,1)和互不相同的点P1,P2,P3,…,Pn,…,满足
OPn
=an
OA
+bn
OB
(n∈N*)
,O为坐标原点,其中an、bn分别为等差数列和等比数列,若P1是线段AB的中点,设等差数列公差为d,等比数列公比为q,当d与q满足条件
 
时,点P1,P2,P3,…,Pn,…共线.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知点A(-1,0),B(1,0),M是平面上的一动点,过M作直线l:x=4的垂线,垂足为N,且|MN|=2|MB|.
(1)求M点的轨迹C的方程;
(2)当M点在C上移动时,|MN|能否成为|MA|与|MB|的等比中项?若能求出M点的坐标,若不能说明理.

查看答案和解析>>

科目:高中数学 来源: 题型:

点A到图形C上每一个点的距离的最小值称为点A到图形C的距离.已知点A(1,0),圆C:x2+2x+y2=0,那么平面内到圆C的距离与到点A的距离之差为1的点的轨迹是(  )

查看答案和解析>>

同步练习册答案