【题目】设函数f(x)=ax2+bx+c(a,b,c∈R),若x=﹣1为函数y=f(x)ex的一个极值点,则下列图象不可能为y=f(x)的图象是( )
A. B.
C. D.
【答案】D
【解析】
先求出函数f(x)ex的导函数,利用x=﹣1为函数f(x)ex的一个极值点可得a,b,c之间的关系,再代入函数f(x)=ax2+bx+c,对答案分别代入验证,看哪个答案不成立即可.
解:由y=f(x)ex=ex(ax2+bx+c)y′=f′(x)ex+exf(x)=ex[ax2+(b+2a)x+b+c],
由x=﹣1为函数f(x)ex的一个极值点可得,﹣1是方程ax2+(b+2a)x+b+c=0的一个根,
所以有a﹣(b+2a)+b+c=0c=a.
法一:所以函数f(x)=ax2+bx+a,对称轴为x,且f(﹣1)=2a﹣b,f(0)=a.
对于A,由图得a>0,f(0)>0,f(﹣1)=0,不矛盾,
对于B,由图得a<0,f(0)<0,f(﹣1)=0,不矛盾,
对于C,由图得a<0,f(0)<0,x0b>0f(﹣1)<0,不矛盾,
对于D,由图得a>0,f(0)>0,x1b>2af(﹣1)<0与原图中f(﹣1)>0矛盾,D不对.
法二:所以函数f(x)=ax2+bx+a,由此得函数相应方程的两根之积为1,对照四个选项发现,D不成立.
故选:D.
科目:高中数学 来源: 题型:
【题目】高三一班、二班各有6名学生去参加学校组织的高中数学竞赛选拔考试,成绩如茎叶图所示.
(1)若一班、二班6名学生的平均分相同,求值;
(2)若将竞赛成绩在、、内的学生在学校推优时,分别赋分、2分、3分,现在从一班的6名参赛学生中选两名,求推优时,这两名学生赋分的和为4分的概率.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】定义域为的函数满足:对于任意的实数都有 成立,且当时,.
(Ⅰ)判断函数的奇偶性,并证明你的结论;
(Ⅱ)证明在上为减函数;
(Ⅲ)若,求实数的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知点、的坐标分别是,,直线,相交于点,且它们的斜率之积为.
(1)求动点的轨迹方程;
(2)若过点的直线交动点的轨迹于、两点, 且为线段,的中点,求直线的方程.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数y=f(x)是定义在R上的奇函数,且当x≥0时,f(x)=-x2+ax.
(1)若a=-2,求函数f(x)的解析式;
(2)若函数f(x)为R上的单调减函数,
①求a的取值范围;
②若对任意实数m,f(m-1)+f(m2+t)<0恒成立,求实数t的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】下列说法正确的是( )
A. “f(0)”是“函数f(x)是奇函数”的充要条件
B. 若p:,,则:,
C. “若,则”的否命题是“若,则”
D. 若为假命题,则p,q均为假命题
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数f(x)=b·ax(其中a,b为常量,且a>0,a≠1)的图象经过点A(1,6),B(3,24).
(1)求f(x);
(2)若不等式()x+()x-m≥0在x∈(-∞,1]时恒成立,求实数m的取值范围.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com