精英家教网 > 高中数学 > 题目详情
已知数列{an}满足a1+a2+…+an=
n
2
an+1(n∈N*),数列{bn}为等比数列,a1=b1=2,a2=b2
(Ⅰ)求{an}、{bn}的 通项公式.
(Ⅱ)若对每个正整数k,在bk和bk+1之间插入ak个2,得到一个新数列{cn}.设Tn是数列{cn}的前n项和,试求满足Tm=2cm+1的所有正整数m.
考点:数列的求和,数列递推式
专题:等差数列与等比数列
分析:(Ⅰ)由式子求出a2,由题意求出公比,根据等比数列的通项公式求出bn,利用递推公式和累积法求出an
(Ⅱ)由(Ⅰ)知bn=2n,ak=2k,由已知写出c1=a1=2,c2=c3=2,c4=a2=4,c5=c6=c7=c8=2,c9=a3=8,…,讨论m=1、2,m≥3,求出Tm、2cm+1,列出方程并整理,讨论方程的解,从而得到结论.
解答: 解:(Ⅰ)由题意知,a1=2,a1+a2+…+an=
n
2
an+1(n∈N*),
所以a1=
1
2
a2,解得a2=4,
因为数列{bn}为等比数列,a1=b1=2,a2=b2
所以数列{bn}的公比是2,即bn=2•2n-1=2n
由a1+a2+…+an=
n
2
an+1(n∈N*)得,
当n≥2时,a1+a2+…+an-1=
n-1
2
an(n∈N*),
两个式子相减得,an=
n
2
an+1-
n-1
2
an,即
an+1
an
=
n+1
n

当n=1时,
a2
a1
=
4
2
=2符合上式,
当n≥2时,
a2
a1
=
2
1
a3
a2
=
3
2
a4
a3
=
4
3
,…,
an
an-1
=
n
n-1

以上n-1个式子相乘得,
an
a1
=
n
1
,所以an=2n;
(Ⅱ)由(Ⅰ)知,bn=2n,ak=2k,
由题意知,c1=a1=2,c2=c3=2,c4=a2=4,c5=c6=c7=c8=2,c9=a3=8,…,
则当m=1时,T1≠2c2,不合题意,当m=2时,T2=2c3,适合题意.
当m≥3时,若cm+1=2,则Tm≠2cm+1一定不适合题意,
从而cm+1必是数列{bn}中的某一项bk+1
则Tm=b1+2+2+b2+2+2+2+2+b3+2+…+2+b4+2+…+b5+2+…+b6+…+bk-1+2+…+bk
=(2+22+23+…+2k)+2(2+4+…+2k)
=2×(2k-1)+k(2+2k)=2k+1+2k2+2k-2,
又2cm+1=2bk+1=2×2k+1
∴2k+1+2k2+2k-2=2×2k+1,即2k-k2-k+1=0,∴2k+1=k2+k,
∵2k+1为奇数,k2+k=k(k+1)为偶数,∴上式无解.
即当m≥3时,Tm≠2cm+1
综上知,满足题意的正整数只有m=2.
点评:本题考查等比数列的通项公式,累积法求出数列的通项公式,等差、等比数列的前n项和公式,数列的求和方法:分组求和,同时考查逻辑推理能力,属于综合题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

如图是函数y=Asin(ωx+φ)(A>0,ω>0,|φ|<π)的图象,由图中条件,得该函数解析式为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

设随机变量X等可能地取值1,2,3,…,10,则P(X<6)的值为(  )
A、0.3B、0.5
C、0.6D、0.2

查看答案和解析>>

科目:高中数学 来源: 题型:

若焦距为4的双曲线的两条渐近线互相垂直,则此双曲线的实轴长为(  )
A、4
2
B、2
2
C、4
D、2

查看答案和解析>>

科目:高中数学 来源: 题型:

某袋中有10个乒乓球,其中有7个新、3个旧球,从袋中任取3个来用,用后放回袋中(新球用后变为旧球),记此时袋中旧球个数为X,求X的数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知AB是圆O的直径,P是上半圆上的任意一点,PC是∠APB的平分线,E是下半圆的中点.
求证:直线PC经过点E.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知双曲线C:
x2
a2
-
y2
b2
=1(a>0,b>0)的左、右焦点分别为F1,F2,过点F2作双曲线C的一条渐近线的垂线,垂足为H,交双曲线于点M且
F2M
=2
MH
,则双曲线C的离心率为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

广州某商场根据以往某种商品的销售记录,绘制了日销售量的频率分布表(如表)和频率分布直方图(如图). 
分组频数频率
[0,50]n10.15
(50,100]n20.25
(100,150]n30.30
(150,200]n40.20
(200,250]n50.10
将日销售量落入各组的频率视为概率,并假设每天的销售量相互独立.
(1)求a1,a3的值.
(2)求在未来连续3天里,有连续2天的日销售量都高于100个且另1天的日销售量不高于50个的概率;
(3)用X表示在未来3天里日销售量高于100个的天数,求随机变量X的分布列和数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:

若曲线C1:x2+y2-4x=0与曲线C2:y(y-mx-x)=0有四个不同的交点,则实数m的取值范围是(  )
A、(-
2
5
5
2
5
5
B、(-
2
5
5
,0)∪(0,
2
5
5
C、[-
3
3
3
3
]
D、(-∞,-
3
3
)∪(
3
3
,+∞)

查看答案和解析>>

同步练习册答案