精英家教网 > 高中数学 > 题目详情
8.在空间四边形中,AB=CD,AB和CD所成角是30°,E、F分别为BC、AD的中点,求EF与AB所成角的大小

分析 根据定义,找到两异面直线所成的角是关键,而解决立体几何问题的基本思想是将立体问题转化为平面问题,由此可选取BC或AD的中点.

解答 解:取BD的中点G,连结EG、FG,
∵E、F分别为BC、AD的中点,
∴EG$\underset{∥}{=}$$\frac{1}{2}$CD,GF$\underset{∥}{=}$$\frac{1}{2}$AB.
∴EG与GF所成的角即为AB与CD所成的角.
∵AB=CD,
∴△EFG为等腰三角形.
又AB、CD成30°角,EG、FG分别为△BCD、△DAB的中位线,
∴∠EGF=30°.
∵∠GFE就是EF与AB所成的角,
∴EF与AB成75°角或15°角.

点评 求两异面直线所成的角的一般步骤:(1)构造:根据所成角的定义,用平移法作出异面直线所成的角;(2)证明:证明作出的角就是要求的角.(3)计算:求角值,常利用三角形.(4)结论.也可用“一作”“二证”“三求解”来概括.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

18.在如图所示的正方体中.
(1)指出哪些棱与BB1是异面直线,哪些棱与对角线BD1是异面直线.
(2)分别求出直线DD1与BC1、A1D1及DC1所成的角度.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.已知α∥β∥γ,直线a与b分别交α,β,γ于点A,B,C和D,E,F,且AB=2,BC=3,DE=4,则EF=6.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.已知cosα=$\frac{1}{4}$,求$\frac{sin(2π+α)cos(-π+α)}{cos(-α)tanα}$的值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.在△ABC中,$\overrightarrow{AB}$=$\overrightarrow{c}$,$\overrightarrow{AC}$=$\overrightarrow{b}$,若D,E分别在BC,BA上,且$\overrightarrow{BD}$=2$\overrightarrow{DC}$,$\overrightarrow{BE}$=2$\overrightarrow{EA}$,则向量$\frac{2}{3}$$\overrightarrow{b}$+$\frac{1}{3}$$\overrightarrow{c}$表示(  )
A.$\overrightarrow{AD}$B.$\overrightarrow{CE}$C.$\overrightarrow{DE}$D.$\overrightarrow{ED}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.把函数y=sin3x的图象进行怎样的变换,就能得到下列函数的图象.
(1)y=sin(3x-$\frac{π}{3}$);
(2)y=sin(3x+$\frac{π}{4}$)-2;
(3)y=-sinx;
(4)y=-sin3x.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

20.若f(x)是以2为周期的奇函数,且当x∈(-1,0)时,f(x)=2x+1.则f($\frac{9}{2}$)的值为0.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.已知单调递增的等比数列{an}满足:a2+a3+a4=28,且a3+2是a2,a4的等差中项.
(1)求数列{an}的通项公式;
(2)若bn=anlog${\;}_{\frac{1}{2}}$an,数列{bn}的前n项和为Sn,求使Sn+n•2n+1>30成立的正整数n的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.若函数y=ax(a>0且a≠1)在[0,1]上的最大值与最小值之和为3,则tan$\frac{a•180°}{6}$的值为(  )
A.0B.$\frac{\sqrt{3}}{3}$C.1D.$\sqrt{3}$

查看答案和解析>>

同步练习册答案