精英家教网 > 高中数学 > 题目详情
已知二次函数f(x)=ax2+bx(a、b为常数且a≠0)满足条件:f(-x+5)=f(x-3),且方程f(x)=x有等根.
(1)求f(x)的解析式;
(2)函数f(x)在(x∈[t,t+1],t∈R)的最大值为u(t),求u(t)解析式.
分析:(1)先由f(-x+5)=f(x-3)得函数对称轴,再由方程f(x)=x有等根,得方程f(x)=x的判别式等于零,最后解方程即可
(2)根据对称轴与区间[t,t+1]的相对位置关系和函数的单调性,分别讨论函数的最值,最后写成分段函数形式即可
解答:解:(1)∵f(-x+5)=f(x-3),∴函数的对称轴为x=1,即-
b
2a
=1
∵方程f(x)=x有等根,∴△=(b-1)2=0
∴b=1,a=-
1
2

f(x)=-
1
2
x2+x

(2)∵f(x)=-
1
2
x2+x
的开口向下,对称轴为x=1
∴当t≥1时,函数f(x)在[t,t+1]上为减函数,最大值为u(t)=f(t)=-
1
2
t2+t
当0<t<1时,函数f(x)最大值为u(t)=f(1)=
1
2

当t≤0时,函数f(x)在[t,t+1]上为增函数,最大值为u(t)=f(t+1)=-
1
2
t2+
1
2

u(t)=
-
1
2
t2+t        (t≥ 1)
1
2
-
1
2
t2+
1
2
    (t≤ 0)
(0<t<1)
点评:本题考查了二次函数解析式的求法和二次函数在轴定区间动状态下的最值求法,解题时要熟练掌握二次函数的图象特征,准确分类讨论.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知二次函数f(x)=x2+2(m-2)x+m-m2
(I)若函数的图象经过原点,且满足f(2)=0,求实数m的值.
(Ⅱ)若函数在区间[2,+∞)上为增函数,求m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知二次函数f(x)=ax2+bx+c(a≠0)的图象过点(0,1),且与x轴有唯一的交点(-1,0).
(Ⅰ)求f(x)的表达式;
(Ⅱ)设函数F(x)=f(x)-kx,x∈[-2,2],记此函数的最小值为g(k),求g(k)的解析式.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知二次函数f(x)=x2-16x+q+3.
(1)若函数在区间[-1,1]上存在零点,求实数q的取值范围;
(2)若记区间[a,b]的长度为b-a.问:是否存在常数t(t≥0),当x∈[t,10]时,f(x)的值域为区间D,且D的长度为12-t?请对你所得的结论给出证明.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•广州一模)已知二次函数f(x)=x2+ax+m+1,关于x的不等式f(x)<(2m-1)x+1-m2的解集为(m,m+1),其中m为非零常数.设g(x)=
f(x)x-1

(1)求a的值;
(2)k(k∈R)如何取值时,函数φ(x)=g(x)-kln(x-1)存在极值点,并求出极值点;
(3)若m=1,且x>0,求证:[g(x+1)]n-g(xn+1)≥2n-2(n∈N*).

查看答案和解析>>

科目:高中数学 来源: 题型:

(1)已知二次函数f(x)的图象与x轴的两交点为(2,0),(5,0),且f(0)=10,求f(x)的解析式.
(2)已知二次函数f(x)的图象的顶点是(-1,2),且经过原点,求f(x)的解析式.

查看答案和解析>>

同步练习册答案