精英家教网 > 高中数学 > 题目详情

【题目】在直角坐标系xOy中,曲线C的参数方程为 (t为参数,).以坐标原点为极点,x轴正半轴为极轴建立极坐标系,已知直线L的极坐标方程为.

(1)设P是曲线C上的一个动点,当时,求点P到直线l的距离的最大值;

(2)若曲线C上所有的点均在直线l的右下方,求a的取值范围.

【答案】(1) 点P到直线l距离的最大值为;(2) a取值范围为.

【解析】

(1)先求出直线l的方程,设,求出P到直线l的距离,再求函数的最大值.(2)由题得恒成立,再求a的取值范围.

(1)由,得,化成直角坐标方程,得,即直线l的方程为,依题意,设,则P到直线l的距离,当,即时,,故点P到直线l距离的最大值为.

(2)因为曲线C上的所有点均在直线l的右下方,∵恒成立,即

(其中)恒成立,

,又,解得,故a取值范围为.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】如图,已知底角为的等腰梯形,底边长为7,腰长为,当一条垂直于底边垂足为的直线从左至右向移动(与梯形有公共点)时,直线把梯形分成两部分,令,记左边部分的面积为

1)试求13时的值;

2)写出关于的函数关系式.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知定义域为的函数满足,当时,,设上的最大值为,且的前n项和为,若对任意的正整数n均成立,则实数的取值范围为( )

A. B. C. D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】

分别求出适合下列条件的直线方程:

(1)经过点且在轴上的截距等于在轴上截距的2倍;

(2)经过直线的交点,且和等距离.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设函数=[]

若曲线y= fx在点(1,处的切线与轴平行a

x=2处取得极小值a的取值范围

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知定义域为的函数是奇函数.

1)求ab的值;

2)判断函数的单调性,并用定义证明;

3)当时,恒成立,求实数k的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】国家质量监督检验检疫局于2004年5月31日发布了新的《车辆驾驶人员血液、呼吸酒精含量阀值与检验》国家标准,新标准规定,车辆驾驶人员血液中的酒精含量大于或等于20毫克/百毫升,小于80毫克/百毫克升为饮酒驾车,血液中的酒精含量大于或等于80毫克/百毫升为醉酒驾车,经过反复试验,喝1瓶啤酒后酒精在人体血液中的变化规律的“散点图”如下:

该函数模型如下:

根据上述条件,回答以下问题:

(1)试计算喝1瓶啤酒后多少小时血液中的酒精含量达到最大值?最大值是多少?

(2)试计算喝1瓶啤酒后多少小时后才可以驾车?(时间以整小时计算)

(参数数据:

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数的导函数为.

1)若对任意恒成立,求实数的取值范围;

2)若函数的极值为正数,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数fx)=2xgx)=(4lnxlnx+bbR).

1)若fx)>0,求实数x的取值范围;

2)若存在x1x2[1+∞),使得fx1)=gx2),求实数b的取值范围;

查看答案和解析>>

同步练习册答案