精英家教网 > 高中数学 > 题目详情
已知三棱锥S-ABC的各顶点都在一个半径为r的球面上,球心O在AB上,SO⊥底面ABC,AC=
2
r
,则球的体积与三棱锥体积之比是(  )
A、πB、2πC、3πD、4π
分析:求出三棱锥的体积,再求出球的体积即可.
解答:精英家教网解:如图,?AB=2r,∠ACB=90°,BC=
2
r

∴V三棱锥=
1
3
×SO×S△ABC=
1
3
•r•
1
2
2
r•
2
r=
1
3
r3
,V=
4
3
πr3

∴V:V三棱锥=
4
3
πr3
1
3
r3=4π
点评:本题考查球的内接体的体积和球的体积的计算问题,是基础题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知三棱锥S-ABC的所有顶点都在球O的球面上,△ABC是边长为1的正三角形,SC为球O的直径,且SC=2;则此棱锥的体积为
2
6
2
6

查看答案和解析>>

科目:高中数学 来源: 题型:

已知三棱锥S-ABC的三条侧棱两两垂直,且SA=2,SB=SC=4,若点P到S、A、B、C这四点的距离都是同一个值,则这个值是
3
3

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•兰州一模)已知三棱锥S-ABC的所有顶点都在以O为球心的球面上,△ABC是边长为1的正三角形,SC为球O的直径,若三棱锥S-ABC的体积为
2
6
,则球O的表面积为

查看答案和解析>>

科目:高中数学 来源: 题型:

已知三棱锥S-ABC的四个顶点在以O为球心的同一球面上,且SA=SB=SC=AB,∠ACB=90°,则当球的表面积为400π时,点O到平面ABC的距离为(  )

查看答案和解析>>

同步练习册答案