【题目】在如图所示的几何体中,平面.
(1)证明:平面;
(2)求平面与平面所成二面角的正弦值.
【答案】(1)证明见解析;(2).
【解析】分析:(1)在中,由勾股定理可得.又平面,据此可得.利用线面垂直的判断定理可得平面.
(2)(方法一)延长,相交于,连接,由题意可知二面角就是平面与平面所成二面角.取的中点为,则就是二面角的平面角.结合几何关系计算可得.
(方法二)建立空间直角坐标系,计算可得平面的法向量.取平面的法向量为.利用空间向量计算可得.
详解:(1)在中,.
所以,所以为直角三角形,.
又因为平面,所以.
而,所以平面.
(2)(方法一)如图延长,相交于,连接,
则平面平面.
二面角就是平面与平面所成二面角.
因为,所以是的中位线.
,这样是等边三角形.
取的中点为,连接,因为平面.
所以就是二面角的平面角.
在,所以.
(方法二)建立如图所示的空间直角坐标系,可得.
.
设是平面的法向量,则
令得.
取平面的法向量为.
设平面与平面所成二面角的平面角为,
则,从而.
科目:高中数学 来源: 题型:
【题目】a,b为空间中两条互相垂直的直线,等腰直角三角形ABC的直角边AC所在直线与a,b都垂直,斜边AB以直线AC为旋转轴旋转,有下列结论:
①当直线AB与a成60°角时,AB与b成30°角;
②当直线AB与a成60°角时,AB与b成60°角;
③直线AB与a所成角的最小值为45°;
④直线AB与a所成角的最大值为60°.
其中正确的是________.(填写所有正确结论的编号)
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数f(x),g(x)分别由下表给出,
则f[g(1)]的值为________,满足f[g(x)]>g[f(x)]的x的值是________.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某群体的人均通勤时间,是指单日内该群体中成员从居住地到工作地的平均用时.某地上班族中的成员仅以自驾或公交方式通勤.分析显示:当中()的成员自驾时,自驾群体的人均通勤时间为(单位:分钟),而公交群体的人均通勤时间不受影响,恒为分钟,试根据上述分析结果回答下列问题:
(1)当在什么范围内时,公交群体的人均通勤时间少于自驾群体的人均通勤时间?
(2)求该地上班族的人均通勤时间的表达式;讨论的单调性,并说明其实际意义.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】通过研究学生的学习行为,心理学家发现,学生接受能力依赖于老师引入概念和描述问题所用的时间,讲座开始时,学生的兴趣激增,中间有一段不太长的时间,学生的兴趣保持理想的状态,随后学生的注意力开始分散.分析结果和实验表明,用表示学生掌握和接收概念的能力(的值越大,表示接受能力越强),表示提出和讲授概念的时间(单位:分钟),可以有以下公式:
(1)开讲多少分钟后,学生的接受能力最强?能维持多长时间?
(2)开讲5分钟与开讲20分钟比较,学生的接受能力何时强一些?
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知是椭圆的左、右焦点,点在椭圆上,线段与轴的交点满足.
(1)求椭圆的标准方程;
(2)过点作不与轴重合的直线,设与圆相交于两点,与椭圆相交于两点,当且时,求的面积的取值范围.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com