精英家教网 > 高中数学 > 题目详情
7.已知直线l1:a(x-y+2)+2x-y+3=0(a∈R)与直线l2的距离为1,若l2不与坐标轴平行,且在y轴上的截距为-2,则l2的方程为4x+3y+6=0.

分析 由直线l1:a(x-y+2)+2x-y+3=0,令$\left\{\begin{array}{l}{x-y+2=0}\\{2x-y+3=0}\end{array}\right.$,解得直线l1经过定点P(-1,1).由题意设直线l2的方程为y=kx-2,利用点到直线的距离公式即可得出.

解答 解:由直线l1:a(x-y+2)+2x-y+3=0,
令$\left\{\begin{array}{l}{x-y+2=0}\\{2x-y+3=0}\end{array}\right.$,解得$\left\{\begin{array}{l}{x=-1}\\{y=1}\end{array}\right.$.
可知直线l1经过定点P(-1,1).
由题意设直线l2的方程为y=kx-2,
则$\frac{|-k-1-2|}{\sqrt{{k}^{2}+1}}$=1,
解得k=$-\frac{4}{3}$.
∴l2的方程为y=-$\frac{4}{3}$x-2.
故答案为:4x+3y+6=0.

点评 本题考查了相互平行的直线问题、点到直线的距离公式,考查了推理能力与计算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

17.已知f(x)是定义在[-2,2]上的函数,满足f(x+2)=-f(x),且x∈[0,2]时,f(x)=2x-x2
(1)求x∈[-2,0)时,f(x)的表达式;
(2)画出f(x)的图象.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.函数y=cosx,x∈[-$\frac{π}{2}$,$\frac{π}{2}$]的值域为[0,1].

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.函数f(x)=sin(ωx+φ)(ω>0.|φ|<$\frac{π}{2}$)的图象部分如图所示.
(1)求f(x)的解析式;
(2)说明y=f(x)的图象是由y=sinx的图象经过怎么样的变化得到的?(必须写清楚变化过程才能得分)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.已知f(n)=cos$\frac{nπ}{5}$(n∈Z),求f(1)+f(2)+f(3)+…+f(2014)的值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.△ABC中,tanA=$\frac{1}{3}$,B=$\frac{π}{4}$,若椭圆E以AB为焦距,且过点C,则椭圆E的离心率是$\frac{\sqrt{10}-\sqrt{2}}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.一个球与一个正三棱柱的三个侧面和两个底面都相切,这个球的面积为$\frac{32π}{3}$,棱柱的面积是多少?

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.△ABC中,a,b,c分别是A,B,C所对的边,S是该三角形的面积,若bcosC=(2a-c)cosB.
(Ⅰ)求∠B的大小;
(Ⅱ)若a=4,S=5$\sqrt{3}$,求b的值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.已知集合A={x|1og2x<2},B=$\left\{{x|\frac{1}{3}<{3^x}<\sqrt{3}}\right\}$,则A∪B是(  )
A.$(0,\frac{1}{2})$B.(0,4]C.(-∞,-1]∪(4,+∞)D.(-1,4)??

查看答案和解析>>

同步练习册答案