精英家教网 > 高中数学 > 题目详情

【题目】已知直线l1过点A(﹣1,0),且斜率为k,直线l2过点B(1,0),且斜率为﹣2k,其中k≠0,又直线l1与l2交于点M.
(1)求动点M的轨迹方程;
(2)若过点N( ,1)的直线l交动点M的轨迹于C、D两点,且N为线段CD的中点,求直线l的方程.

【答案】
(1)解:设M(x,y),

∵直线l1与l2交于点M,

∴联立得: (k≠0),

消去k得: =﹣2,

则动点M的轨迹方程为2x2+y2=2(x≠±1)


(2)解:由(1)得M的轨迹方程为2x2+y2=2(x≠±1),

设点C(x1,y1),D(x2,y2),则有2x12+y12=2①,2x22+y22=2②,

①﹣②得:2(x1﹣x2)(x1+x2)+(y1﹣y2)(y1+y2)=0,即 =﹣2×

∵N( ,1)为CD的中点,

∴x1+x2=1,y1+y2=2,

∴直线l的斜率k=﹣1,

∴直线l的方程为y﹣1=﹣(x﹣ ),即2x+2y﹣3=0


【解析】(1)设M坐标为(x,y),表示出两直线方程,联立消去k即可确定出M的轨迹方程;(2)设出C与D坐标,分别代入M的轨迹方程,整理由根据N为CD中点,求出直线l斜率,即可确定出直线l方程.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】下列说法正确的是( )

A. 命题“”的否定是“

B. 上恒成立”上恒成立”

C. 命题“已知,若,则”是真命题

D. 命题“若,则函数只有一个零点”的逆命题为真命题

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数

1)求曲线在点(1,f(1))处的切线方程;

2)求经过点A1,3)的曲线的切线方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】函数y=x+sin|x|,x∈[﹣π,π]的大致图象是(
A.
B.
C.
D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=a(2cos2 +sinx)+b
(1)若a=﹣1,求f(x)的单调增区间;
(2)若x∈[0,π]时,f(x)的值域是[5,8],求a,b的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)(xk)ex

(1)f(x)的单调区间;

(2)f(x)在区间[01]上的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=x3﹣ax﹣1.
(1)若f(x)在(﹣∞,+∞)上单调递增,求实数a的取值范围;
(2)是否存在实数a,使f(x)在(﹣1,1)上单调递减?若存在,求出a的取值范围;若不存在试说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在一次抗洪抢险中,准备用射击的方法引爆从桥上游漂流而下的一个巨大的汽油灌,已知只有5发子弹,第一次命中只能使汽油流出,第二次命中才能引爆.每次射击相互独立,且命中概率都是,求(1)油罐被引爆的概率;(2)如果引爆或子弹打光则停止射击,设射击次数为,求的分布列.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在四棱锥中, 平面 平分 的中点, .

(1)证明: 平面.

(2)证明: 平面.

(3)求直线与平面所成的角的正切值.

查看答案和解析>>

同步练习册答案