精英家教网 > 高中数学 > 题目详情

【题目】甲、乙两队进行排球比赛,采取五局三胜制(当一队赢得三场胜利时,该队获胜,比赛结束).根据前期比赛成绩可知在每一局比赛中,甲队获胜的概率为,乙队获胜的概率为.若前两局中乙队以领先,则下列说法中错误的是(

A.甲队获胜的概率为B.乙队以获胜的概率为

C.乙队以三比一获胜的概率为D.乙队以获胜的概率为

【答案】D

【解析】

,在乙队以领先的前提下,若甲队获胜则第三、四、五局均为甲队取胜;

,乙队以获胜,即第4局乙获胜;

,乙队以三比一获胜,即第三局甲获胜,第四局乙获胜;

,若乙队以获胜,则第五局为乙队取胜,第三、四局乙队输.

解:对于,在乙队以领先的前提下,若甲队获胜则第三、四、五局均为甲队取胜,

所以甲队获胜的概率为,故正确;

对于,乙队以获胜,即第4局乙获胜,概率为,故正确;

对于,乙队以三比一获胜,即第三局甲获胜,第四局乙获胜,概率为,故正确;

对于,若乙队以获胜,则第五局为乙队取胜,第三、四局乙队输,

所以乙队以获胜的概率为,故错.

故选:

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】在直角坐标系中,曲线的参数方程为为参数),以原点为极点,轴的非负半轴为极轴建立极坐标系,直线的极坐标方程为

1)求直线与曲线的普通方程;

2)若直线与曲线交于两点,点,求的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆C 的左、右顶点分别为,上、下顶点分别为,四边形的面积为,坐标原点O到直线的距离为.

1)求椭圆C的方程;

2)若直线l与椭圆C相交于AB两点,点P为椭圆C上异于AB的一点,四边形为平行四边形,探究:平行四边形的面积是否为定值?若是,求出此定值;若不是,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

1)求曲线在点处的切线方程;

2)若时,恒成立,求m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=ln (x+1)-xa∈R.

(1)当a>0时,求函数f(x)的单调区间;

(2)若存在x>0,使f(x)+x+1<- (a∈Z)成立,求a的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】噪声污染已经成为影响人们身体健康和生活质量的严重问题,为了了解声音强度(单位:分贝)与声音能量(单位:)之间的关系,将测量得到的声音强度和声音能量=1,2…,10)数据作了初步处理,得到如图散点图及一些统计量的值.

45.7

0.51

5.1

表中

(1)根据散点图判断,哪一个适宜作为声音强度关于声音能量的回归方程类型?(给出判断即可,不必说明理由)

(2)根据表中数据,求声音强度关于声音能量的回归方程;

(3)当声音强度大于60分贝时属于噪音,会产生噪音污染,城市中某点共受到两个声源的影响,这两个声源的声音能量分别是,且.己知点的声音能量等于声音能量之和.请根据(1)中的回归方程,判断点是否受到噪音污染的干扰,并说明理由.

附:对于一组数据.其回归直线的斜率和截距的最小二乘估计分别为:.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在四棱锥中,底面为直角梯形,,平面底面的中点,是棱上的点,.

1)若的中点,求证:

2)若二面角,设,试确定的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

(1)若函数,试研究函数的极值情况;

(2)记函数在区间内的零点为,记,若在区间内有两个不等实根,证明:.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】第23届冬季奥运会于2018年2月9日至2月25日在韩国平昌举行,期间正值我市学校放寒假,寒假结束后,某校工会对全校教职工在冬季奥运会期间每天收看比赛转播的时间作了一次调查,得到如下频数分布表:

收看时间(单位:小时)

收看人数

14

30

16

28

20

12

(1)若将每天收看比赛转播时间不低于3小时的教职工定义为“体育达人”,否则定义为“非体育达人”,请根据频数分布表补全列联表:

合计

体育达人

40

非体育达人

30

合计

并判断能否有的把握认为该校教职工是否为“体育达人”与“性别”有关;

(2)在全校“体育达人”中按性别分层抽样抽取6名,再从这6名“体育达人”中选取2名作冬奥会知识讲座.记其中女职工的人数为,求的分布列与数学期望.

附表及公式:

0.15

0.10

0.05

0.025

0.010

0.005

0.001

2.072

2.706

3.841

5.024

6.635

7.879

10.828

.

查看答案和解析>>

同步练习册答案