精英家教网 > 高中数学 > 题目详情
1.已知x,y∈R+,x+y=1,则$\frac{x}{y}$+$\frac{1}{x}$的最小值为3.

分析 首先,将所给的条件代入,转化为基本不等式的结构形式,然后,利用基本不等式进行求解.

解答 解:∵x,y∈R+,x+y=1,
∴$\frac{x}{y}$+$\frac{1}{x}$=$\frac{x}{y}$+$\frac{x+y}{x}$=$\frac{x}{y}$+$\frac{y}{x}$+1≥2+1=3,
故答案为:3.

点评 本题重点考查了基本不等式问题,考查等价转化思想的灵活运用,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

11.解不等式:x2+(1-a)x-a≤0.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.点M(x,y)在直线y=-2x+8上,当x∈[2,5]时,则$\frac{y+1}{x+1}$的取值范围是[-$\frac{1}{6}$,$\frac{5}{3}$].

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.设函数f(x)=xm+ax(m,a为常数)的导数为f′(x)=2x+1,则数列{$\frac{f(n)}{n•{2}^{n}}$}(n∈N*)的前n项和为(  )
A.3-$\frac{n+3}{{2}^{n}}$B.3-$\frac{n+2}{{2}^{n}}$C.3+$\frac{n-1}{{2}^{n}}$D.$\frac{3}{2}$-$\frac{n+1}{{2}^{n+1}}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.已知A、B为椭圆$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)的左右顶点,C(0,b),直线l:x=2a与x轴交于点D,与直线AC交于点P,且BP平分角∠DBC,则椭圆的离心率为$\frac{\sqrt{2}}{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.若函数f(x)=2$\sqrt{3}$sinxcosx+2cos2x+m在区间[0,$\frac{π}{2}$]的最大值为6.
(1)求常数m的值;
(2)求函数当x∈R时的最小值,并求出相应的x的取值集合;
(3)求该函数x∈[0,π]的单调增区间.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.用符号语言表示下列语句.
(1)点A在平面α内,但在平面β外;
(2)直线α经过平面α外一点M;
(3)直线a在平面α内,又在平面β内,即平面α和β相交于直线a.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.已知椭圆E:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0),椭圆E的右焦点到直线l:x-y+1=0的距离为$\sqrt{2}$.椭圆E的右顶点到右焦点与直线x=2的距离之比为$\frac{\sqrt{2}}{2}$.
(1)求椭圆E的标准方程;
(2)若直线l与椭圆E交于M,N两点,l与x轴,y轴分别交于C,D两点,记MN的中点为G,且C,D两点到直线OG的距离相等,当△OMN的面积最大时,求△OCD的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.已知等比数列{an}的公比为q≠-1,前n项和为Sn,若集合M={S|S=$\underset{lim}{n→∞}$$\frac{{S}_{n}}{{S}_{2n}}$},则集合M等于(  )
A.{0}B.{0,$\frac{1}{2}$,1}C.{1,$\frac{1}{2}$}D.{0,$\frac{1}{2}$}

查看答案和解析>>

同步练习册答案