【题目】已知数列{an}满足a1=1,an+1= (n∈N*),若bn+1=(n﹣2λ)( +1)(n∈N*),b1=﹣ λ,且数列{bn}是单调递增数列,则实数λ的取值范围是
【答案】
【解析】解:∵数列{an}满足:a1=1,an+1= (n∈N*),
∴两边取倒数,化为 =1+ ,变形为: +1=2 ,
∴数列{ +1}是等比数列,首项为 +1=2,公比为2,
∴ +1=2n,
∴bn+1=(n﹣2λ) =(n﹣2λ)2n,
∵数列{bn}是单调递增数列,n≥2时,
∴bn+1>bn,
∴(n﹣2λ)2n>(n﹣1﹣2λ)2n﹣1,
化为:λ< ,
解得λ< .
但是当n=1时,
b2>b1,∵b1=﹣ λ,
∴(1﹣2λ)2>﹣ λ,
解得λ< ,
∴λ∈ .
所以答案是: .
【考点精析】通过灵活运用数列的通项公式,掌握如果数列an的第n项与n之间的关系可以用一个公式表示,那么这个公式就叫这个数列的通项公式即可以解答此题.
科目:高中数学 来源: 题型:
【题目】设等差数列{an}前n项和为Sn , 且满足a2=2,S5=15;等比数列{bn}满足b2=4,b5=32.
(1)求数列{an}、{bn}的通项公式;
(2)求数列{anbn}的前n项和Tn .
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】将一颗质地均匀的正方体骰子(六个面的点数分别为1,2,3,4,5,6)先后抛掷两次,记第一次出现的点数为x,第二次出现的点数为y.
(1)求事件“x+y≤3”的概率;
(2)求事件“|x﹣y|=2”的概率.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】过不重合的A(m2+2,m2﹣3),B(3﹣m﹣m2 , 2m)两点的直线l倾斜角为45°,则m的取值为( )
A.m=﹣1
B.m=﹣2
C.m=﹣1或2
D.m=l或m=﹣2
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知正项数列{an}的前n项和为Sn , 且 = ,a1=m,现有如下说法: ①a2=5;
②当n为奇数时,an=3n+m﹣3;
③a2+a4+…+a2n=3n2+2n.
则上述说法正确的个数为( )
A.0个
B.1个
C.2个
D.3个
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知二次函数f(x)=ax2+bx+1满足f(﹣1)=0,且x∈R时,f(x)的值域为[0,+∞).
(1)求f(x)的表达式;
(2)设函数g(x)=f(x)﹣2kx,k∈R. ①若g(x)在x∈[﹣2,2]时是单调函数,求实数k的取值范围;
②若g(x)在x∈[﹣2,2]上的最小值g(x)min=﹣15,求k值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,四边形ABCD和ADPQ均为正方形,他们所在的平面互相垂直,动点M在线段PQ上,E、F分别为AB、BC的中点,设异面直线EM与AF所成的角为θ,则cosθ的最大值为 .
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知数列{an}的各项均为正数,Sn表示数列{an}的前n项的和,且
(1)求数列{an}的通项公式;
(2)设 ,求数列{bn}的前n项和Tn .
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在△ABC中,a,b,c分别是内角A,B,C的对边,AB=5,cos∠ABC= .
(1)若BC=4,求△ABC的面积S△ABC;
(2)若D是边AC的中点,且BD= ,求边BC的长.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com