精英家教网 > 高中数学 > 题目详情

已知函数为常数)
(1)当恒成立,求实数的取值范围;
(2)若函数有对称中心为A(1,0),求证:函数的切线在切点处穿过图象的充要条件是恰为函数在点A处的切线.(直线穿过曲线是指:直线与曲线有交点,且在交点左右附近曲线在直线异侧)

(1)实数的取值范围是:;(2)详见试题解析.

解析试题分析:(1)由已知条件,构造函数,当恒成立恒成立.利用导数讨论函数的单调性及最值,即可求得实数的取值范围;(2)由已知,函数关于A(1,0)对称,则是奇函数,由此可求出的值,进而得的解析式,利用导数的几何意义,求出函数在点A处的切线,构造函数,利用导数分别研究函数的单调性,结合直线穿过曲线定义,证明充分性和必要性.
试题解析:(1)设.令:,得
所以:当,即时,是增函数,最小值为,满足;当,即时,在区间为减函数,在区间为增函数.所以最小值,故不合题意.所以实数的取值范围是:             6分
(2)因为关于A(1,0)对称,则是奇函数,所以,所以 ,则.若为A点处的切线则其方程为:,令,所以为增函数,而所以直线穿过函数的图象.                        9分
是函数图象在的切线,则方程:,设,则
,令得:,当时:,从而处取得极大值,而,则当,所以图象在直线的同侧,所在不能在穿过函数图象,所以不合题意,同理可证也不合题意.所以(前面已证)所以

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

函数.
(1)若,函数在区间上是单调递增函数,求实数的取值范围;
(2)设,若对任意恒成立,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

某地区注重生态环境建设,每年用于改造生态环境总费用为亿元,其中用于风景区改造为亿元。该市决定建立生态环境改造投资方案,该方案要求同时具备下列三个条件:①每年用于风景区改造费用随每年改造生态环境总费用增加而增加;②每年改造生态环境总费用至少亿元,至多亿元;③每年用于风景区改造费用不得低于每年改造生态环境总费用的15%,但不得高于每年改造生态环境总费用的25%.
,请你分析能否采用函数模型y=作为生态环境改造投资方案.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数.
(1)若在区间单调递增,求的最小值;
(2)若,对,使成立,求的范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数,函数
(I)试求f(x)的单调区间。
(II)若f(x)在区间上是单调递增函数,试求实数a的取值范围:
(III)设数列是公差为1.首项为l的等差数列,数列的前n项和为,求证:当时,.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数.
(1)当时,求的极值;(2)当时,讨论的单调性;
(3)若对任意的恒有成立,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知.
(Ⅰ)请写出的表达式(不需证明);
(Ⅱ)求的极小值
(Ⅲ)设的最大值为的最小值为,试求的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数.
(Ⅰ)当时,试讨论的单调性;
(Ⅱ)设,当时,若对任意,存在,使,求实数取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数.
(Ⅰ)当时,恒成立,求实数的取值范围;
(Ⅱ)若对一切恒成立,求实数的取值范围.

查看答案和解析>>

同步练习册答案