精英家教网 > 高中数学 > 题目详情
1.若直线mx-2y-1=0经过第一、三、四象限,则实数m的取值范围是m>0.

分析 由直线过定点(0,-$\frac{1}{2}$),结合图象可得.

解答 解:∵直线mx-2y-1=0经过第一、三、四象限,
∴直线y=$\frac{m}{2}$x-$\frac{1}{2}$经过第一、三、四象限,
∵直线过定点(0,-$\frac{1}{2}$),
∴结合图象可得m>0
故答案为:m>0

点评 本题考查直线的一般式方程,数形结合是解决问题的关键,属基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

11.指数函数f(x)=ax(a>0,a≠1)的图象经过点(2,16),则实数a的值是(  )
A.$\frac{1}{4}$B.$\frac{1}{2}$C.2D.4

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.设集合U={0,1,2,3},A={x|x2-x=0},则∁UA={2,3}.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.曲线f(x)=$\frac{x}{{x}^{2}+1}$在点(1,f(1))处的切线方程是(  )
A.x=1B.y=$\frac{1}{2}$C.x+y=1D.x-y=1

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.如图所示,函数f(x)的定义域为[-1,2],f(x)的图象为折线AB,BC.
(Ⅰ)求f(x)的解析式;
(Ⅱ)解不等式f(x)≥x2

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.如图,在等腰梯形ABCD中,AB∥CD,AD=DC=a,∠ABC=60°,平面ACEF⊥平面ABCD,四边形ACEF是平行四边形,点M在线段EF上.
(1)求证:BC⊥平面ACEF;
(2)当FM为何值时,AM∥平面BDE?证明你的结论.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.已知4a=9b=12,则a,b满足下列关系式(  )
A.$\frac{1}{a}$+$\frac{1}{b}$=1B.$\frac{1}{a}$+$\frac{1}{2b}$=1C.$\frac{2}{a}$+$\frac{1}{b}$=1D.$\frac{1}{2a}$+$\frac{1}{b}$=1

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.已知等比数列{an}的前n项和为Sn,且5S1,2S2,S3成等差数列.
(1)求{an}的公比q;
(2)当a1-a3=3时,证明:数列{Sn-1}也是等比数列.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.在数列{an}中,a1=2,且对于任意正整数n都有a1+a2+…+an=n2an,数列{bn}满足b1=1,bk+1=ak+bk(k∈N*
(1)求a2,b2的值;
(2)求数列{an}的通项公式.

查看答案和解析>>

同步练习册答案