精英家教网 > 高中数学 > 题目详情
已知{an}为等差数列,其公差为-2,且a7是a3与a9的等比中项,求数列的通项公式an
分析:设出等差数列的首项,把a7、a3、a9分别用首项和公差表示,由a7是a3与a9的等比中项列式求解首项,则等差数列的通项公式可求.
解答:解:设等差数列{an}的首项为a1,由公差d=-2,
得a7=a1+6d=a1-12,a3=a1+2d=a1-4,a9=a1+8d=a1-16.
∵a7是a3与a9的等比中项,
(a7)2=a3a9
(a1-12)2=(a1-4)(a1-16)
解得:a1=20.
∴an=20+(n-1)(-2)=22-2n.
点评:本题考查了等差数列和等比数列的通项公式,考查了一元二次方程的解法,是基础的计算题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知命题:“在等差数(an)中,若4a2+a10+a(  )=24,则S11为定值”为真命题,由于印刷问题,括号处的数模糊不清,可推得括号内的数为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知等差数an的前n项和为SnS10=
3
0
(1+3x)dx
,则a5+a6=(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

已知等差数到{an}中,a1=120,公差d=-4,Sn为其前n项和,若Sn≤an(n≥2).则n的最小值为(    )

A.60                  B.62              C.70               D.72

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

已知命题:“在等差数(an)中,若4a2+a10+a(  )=24,则S11为定值”为真命题,由于印刷问题,括号处的数模糊不清,可推得括号内的数为______.

查看答案和解析>>

科目:高中数学 来源:2009年江苏省苏州市高三教学调研数学试卷(解析版) 题型:解答题

已知命题:“在等差数(an)中,若4a2+a10+a( )=24,则S11为定值”为真命题,由于印刷问题,括号处的数模糊不清,可推得括号内的数为   

查看答案和解析>>

同步练习册答案