精英家教网 > 高中数学 > 题目详情
数列{an}的前n项和Sn=n2-2n,则a4等于(  )
A、-7B、-1C、0D、1
考点:数列的函数特性
专题:等差数列与等比数列
分析:由Sn=n2-2n,可得a4=S4-S3,从而可得答案.
解答: 解:∵Sn=n2-2n
∴a4=S4-S3=42-24-(32-23)=-1.
故选:B.
点评:本题考查数列的递推关系的应用,依题意得a4=S4-S3是关键,属于基础题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知函数f(x)=|x-a|-
4
x
+a,a∈R.
(1)若a=1,试判断并用定义证明函数f(x)在[1,4]上的单调性;
(2)当x∈[1,4]时,求函数f(x)的最大值的表达式M(a);
(3)是否存在实数a,使得f(x)=3有3个不等实根x1<x2<x3,且它们依次成等差数列,若存在,求出所有a的值,若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

下列函数与y=-x是同一函数的是(  )
A、y=-
3x3
B、y=
-x(x-1)
x-1
C、y=-
x2
D、y=-
x
x

查看答案和解析>>

科目:高中数学 来源: 题型:

求f(x)=
(x+1)2+1
+
(x-2)2+4
的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

求函数y=
x+3,x<1
-x+6,x≥1
的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

某工厂生产主要产品后,留下大量中心角为60°,半径为a的扇形边角料,现要废物利用,从中剪裁出矩形毛坯,要求矩形面积尽可能大,并如图设计了两种裁剪方法,一种是使矩形的一边落在扇形的半径上,另一种是使矩形的两顶点分别在扇形的两条半径上,请选出最佳方案.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知等差数列{an}的前n项和为Sn,且满足
S4
4
-
S3
3
=1
,则数列{an}的公差是(  )
A、
1
2
B、
1
3
C、2
D、3

查看答案和解析>>

科目:高中数学 来源: 题型:

定义在R上的增函数y=f(x)对任意x,y∈R,都有f(x+y)=f(x)+f(y).
(1)求f(0);
(2)求证:f(x)为奇函数;
(3)求满足不等式f(x2+2)+f[-3x]<0的x的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=loga(x-2)+1(常数a>0且a≠1)的图象恒过定点P.
(1)写出定点P的坐标;
(2)求函数f(x)在区间[3,5]上的最大值.

查看答案和解析>>

同步练习册答案