精英家教网 > 高中数学 > 题目详情

【题目】函数 的最大值为2,它的最小正周期为2π. (Ⅰ)求函数f(x)的解析式;
(Ⅱ)若g(x)=cosxf(x),求g(x)在区间 上的最大值和最小值.

【答案】解:(Ⅰ)函数

∵f(x)的最小正周期为2π

解得ω=1.

∵f(x)的最大值2,∴A=2.

故得f(x)的解析式为

(Ⅱ)由(Ⅰ)可知 =

那么g(x)=cosxf(x)= = =sin(2x+

∵x∈ 上时,

可得:

于是,当2x+ = 时,g(x)取得最大值为

当2x+ = 时,g(x)取得最小值为0.

∴g(x)在区间 上的最大值为 ,最小值为0


【解析】(Ⅰ)根据f(x)最小正周期为2π,求出ω.f(x)的最大值2,所以A=2.可得解析式(Ⅱ)根据g(x)=cosxf(x),求出g(x)的解析式,x∈ 上时,求出内层函数的取值范围,结合三角函数的图象和性质,求出f(x)的最大值和最小值.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】(2015·陕西)设fn(x)是等比数列1,x,x2...,xn的各项和,其中x>0,nN, ,n≥2,
(1)证明:函数Fn(x)=fn(x)-2在(,1)内有且仅有一个零点(记为xn),且xn=+xnn+1
(2)设有一个与上述等比数列的首项、末项、项数分别相同的等差数列,其各项和为gn(x),比较fn(x)与gn(x)的大小,并加以证明.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】下列说法正确的是( ) (1.)已知等比数列{an},则“数列{an}单调递增”是“数列{an}的公比q>1”的充分不必要条件;
(2.)二项式 的展开式按一定次序排列,则无理项互不相邻的概率是
(3.)已知 ,则
(4.)为了解1000名学生的学习情况,采用系统抽样的方法,从中抽取容量为40的样本,则分段的间隔为40.
A.(1)(2)
B.(2)(3)
C.(1)(3)
D.(2)(4)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】我们国家正处于老龄化社会中,老有所依也是政府的民生工程.某市共有户籍人口400万,其中老人(年龄60岁及以上)人数约有66万,为了了解老人们的健康状况,政府从老人中随机抽取600人并委托医疗机构免费为他们进行健康评估,健康状况共分为不能自理、不健康尚能自理、基本健康、健康四个等级,并以80岁为界限分成两个群体进行统计,样本分布被制作成如图表:
(1)若采用分层抽样的方法再从样本中的不能自理的老人中抽取8人进一步了解他们的生活状况,则两个群体中各应抽取多少人?
(2)估算该市80岁及以上长者占全市户籍人口的百分比;
(3)据统计该市大约有五分之一的户籍老人无固定收入,政府计划为这部分老人每月发放生活补贴,标准如下: ①80岁及以上长者每人每月发放生活补贴200元;
②80岁以下老人每人每月发放生活补贴120元;
③不能自理的老人每人每月额外发放生活补贴100元.试估计政府执行此计划的年度预算.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知不等式|x+3|﹣2x﹣1<0的解集为(x0 , +∞) (Ⅰ)求x0的值;
(Ⅱ)若函数f(x)=|x﹣m|+|x+ |﹣x0(m>0)有零点,求实数m的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数 的最小正周期为4π,则(
A.函数f(x)的图象关于原点对称
B.函数f(x)的图象关于直线 对称
C.函数f(x)图象上的所有点向右平移 个单位长度后,所得的图象关于原点对称
D.函数f(x)在区间(0,π)上单调递增

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=ex+x2﹣x,g(x)=x2+ax+b,a,b∈R. (Ⅰ)当a=1时,求函数F(x)=f(x)﹣g(x)的单调区间;
(Ⅱ)若曲线y=f(x)在点(0,1)处的切线l与曲线y=g(x)切于点(1,c),求a,b,c的值;
(Ⅲ)若f(x)≥g(x)恒成立,求a+b的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】执行所给的程序框图,则输出的值是(
A.
B.
C.
D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知向量 满足| |=2,| |=1,则下列关系可以成立的而是(
A.( )⊥
B.( )⊥( +
C.( + )⊥
D.( + )⊥

查看答案和解析>>

同步练习册答案