精英家教网 > 高中数学 > 题目详情

【题目】已知椭圆的焦距为分别为椭圆的左、右顶点,为椭圆上的两点(异于),连结,且斜率是斜率的倍.

(1)求椭圆的方程;

(2)证明:直线恒过定点.

【答案】(1)

(2)证明见解析.

【解析】

1)根据题意列出方程组,解出方程组即可得椭圆方程;(2)连结,由椭圆的性质可得出,故而可得,当斜率不存在时,设,解出,当直线斜率存在时,设,联立直线与椭圆的方程,结合韦达定理,可得出,得出的关系,代入直线方程即可得定点.

(1)因为,所以,即椭圆的方程为

(2)连结

因为点在椭圆上,所以

因为,所以

斜率不存在时,设,不妨设轴上方,

因为,所以

(ii)当斜率存在时,设

,所以

因为

所以,即

时,,恒过定点,当斜率不存在亦符合:当,过点与点重合,舍去.

所以直线恒过定点

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】如图,在直角梯形中,,点APB的中点,现沿AD将平面PAD折起,设.

(1)为直角时,求异面直线PCBD所成角的大小;

(2)为多少时,三棱锥的体积为?

(3)剪去梯形中的,留下长方形纸片,在BC边上任取一点E,把纸片沿AE折成直二面角,E点取何处时,使折起后两个端点间的距离最短.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数,则满足恒成立的的取值个数为(  )

A. 0B. 1C. 2D. 3

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设抛物线的焦点为,过点作垂直于轴的直线与抛物线交于两点,且以线段为直径的圆过点.

(1)求抛物线的方程;

(2)若直线与抛物线交于两点,点为曲线:上的动点,求面积的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知动直线l与椭圆C交于两个不同的点,O为坐标原点.

若直线l过点,且原点到直线l的距离为,求直线l的方程;

的面积,求证:均为定值;

椭圆C上是否存在三点DEG,使得?若存在,判断的形状;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,四棱锥的底面是菱形,底面分别是的中点,.

I)证明:

II)求直线与平面所成角的正弦值;

III)在边上是否存在点,使所成角的余弦值为,若存在,确定点位置;若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设点为抛物线外一点,过点作抛物线的两条切线,切点分别为

(Ⅰ)若点,求直线的方程;

(Ⅱ)若点为圆上的点,记两切线的斜率分别为,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】(选做题)

A.[选修4-2:矩阵与变换](本小题满分10分)

已知m,n∈R,向量是矩阵的属于特征值3的一个特征向量,求矩阵M及另一个特征值.

B.[选修4-4:坐标系与参数方程](本小题满分10分)

在平面直角坐标系xOy中,已知直线的参数方程为( t为参数),椭圆C的参数方程为.设直线与椭圆C交于A,B两点,求线段AB的长.

C.[选修4-5:不等式选讲](本小题满分10分)

已知x,y,z均是正实数,且求证:

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在直角坐标系中,直线的参数方程为为参数).以坐标原点为极点,轴正半轴为极轴建立极坐标系,曲线的极坐标方程为.

(Ⅰ)求曲线的直角坐标方程,并说明它为何种曲线;

(Ⅱ)设点的坐标为,直线交曲线两点,求的取值范围.

查看答案和解析>>

同步练习册答案