【题目】已知椭圆的焦距为分别为椭圆的左、右顶点,为椭圆上的两点(异于),连结,且斜率是斜率的倍.
(1)求椭圆的方程;
(2)证明:直线恒过定点.
科目:高中数学 来源: 题型:
【题目】如图,在直角梯形中,,点A是PB的中点,现沿AD将平面PAD折起,设.
(1)当为直角时,求异面直线PC与BD所成角的大小;
(2)当为多少时,三棱锥的体积为?
(3)剪去梯形中的,留下长方形纸片,在BC边上任取一点E,把纸片沿AE折成直二面角,问E点取何处时,使折起后两个端点间的距离最短.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】设抛物线的焦点为,过点作垂直于轴的直线与抛物线交于,两点,且以线段为直径的圆过点.
(1)求抛物线的方程;
(2)若直线与抛物线交于,两点,点为曲线:上的动点,求面积的最小值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知动直线l与椭圆C:交于,两个不同的点,O为坐标原点.
若直线l过点,且原点到直线l的距离为,求直线l的方程;
若的面积,求证:和均为定值;
椭圆C上是否存在三点D、E、G,使得?若存在,判断的形状;若不存在,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,四棱锥的底面是菱形,底面,分别是的中点,,,.
(I)证明:;
(II)求直线与平面所成角的正弦值;
(III)在边上是否存在点,使与所成角的余弦值为,若存在,确定点位置;若不存在,说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】设点为抛物线外一点,过点作抛物线的两条切线,,切点分别为,.
(Ⅰ)若点为,求直线的方程;
(Ⅱ)若点为圆上的点,记两切线,的斜率分别为,,求的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】(选做题)
A.[选修4-2:矩阵与变换](本小题满分10分)
已知m,n∈R,向量是矩阵的属于特征值3的一个特征向量,求矩阵M及另一个特征值.
B.[选修4-4:坐标系与参数方程](本小题满分10分)
在平面直角坐标系xOy中,已知直线的参数方程为( t为参数),椭圆C的参数方程为.设直线与椭圆C交于A,B两点,求线段AB的长.
C.[选修4-5:不等式选讲](本小题满分10分)
已知x,y,z均是正实数,且求证:.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在直角坐标系中,直线的参数方程为(为参数).以坐标原点为极点,轴正半轴为极轴建立极坐标系,曲线的极坐标方程为.
(Ⅰ)求曲线的直角坐标方程,并说明它为何种曲线;
(Ⅱ)设点的坐标为,直线交曲线于,两点,求的取值范围.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com