精英家教网 > 高中数学 > 题目详情
5.设函数y=f(x)定义域为D,若对于任意x1,x2∈D且x1+x2=2a,恒有f(x1)+f(x2)=2b,则称点(a,b)为函数y=f(x)图象的对称中心.研究并利用函数f(x)=x3-3x2-sin(πx)的对称中心,计算$S=f(\frac{1}{2015})+f(\frac{2}{2015})+…+f(\frac{4028}{2015})+f(\frac{4029}{2015})$的值(  )
A.-8058B.8058C.-8060D.8060

分析 观察到自变量前后对称相加和为定值2,故令a=1,x1+x2=2,求得f(x1)+f(x2)=-4,从而求得要求式子的值.

解答 解:观察到自变量前后对称相加和为定值2,故令a=1,∵x1+x2=2,
∴$f({x_1})+f({x_2})={x_1}^3-3{x_1}^2-sin(π{x_1})+{(2-{x_1})^3}-3{(2-{x_1})^2}-sin[π(2-{x_1})]=-4$,为定值,
∴$S=f(\frac{4029}{2015})+f(\frac{4028}{2015})+…+f(\frac{2}{2015})+f(\frac{1}{2015})$,
故2S=-4×4029,∴S=-8058.
故选:A.

点评 本题主要考查正弦函数的函数的图象的对称性,求函数的值,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

10.若图中的三个直角三角形是一个体积为20cm3的几何体的三视图,则这个几何体外接球的表面积为(  )
A.25xcm2B.$\frac{77π}{2}$cm2C.77πcm2D.144πcm2

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.直线mx+y-m=0,无论m取任意实数,它都过点(1,0).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.设x>0,则“a=1”是“x+$\frac{a}{x}$≥2恒成立”的(  )
A.充分不必要条件B.必要不充分条件
C.充分必要条件D.既不充分也不必要条件

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.下列五个命题:
①直线l的斜率k∈[-1,1],则直线l的倾斜角的范围是$α∈[{-\frac{π}{4},\frac{π}{4}}]$;
②直线l:y=kx+1与过A(-1,5),B(4,-2)两点的线段相交,则k≤-4或$k≥-\frac{3}{4}$;
③如果实数x,y满足方程(x-2)2+y2=3,那么$\frac{y}{x}$的最大值为$\sqrt{3}$;
④直线y=kx+1与椭圆$\frac{x^2}{5}+\frac{y^2}{m}=1$恒有公共点,则m的取值范围是m≥1;
⑤方程x2+y2+4mx-2y+5m=0表示圆的充要条件是$m<\frac{1}{4}$或m>1;
正确的是(  )
A.②③B.③④C.②⑤D.②③⑤

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.已知Sn是等差数列{an}的前n项和,若S6=6,S15=75,则数列$\left\{{\frac{S_n}{n}}\right\}$的前20项和为60.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.实数x,y满足约束条件$\left\{\begin{array}{l}x+y≤4\\ 3x-y≥0\\ y≥0\end{array}\right.$,则目标函数z=2x-y的最小值为(  )
A.-1B.2C.4D.8

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.如图,在四棱锥P-ABCD中,PA⊥平面ABCD,底面ABCD是菱形,AB=2,∠BAD=60°.
(1)求证:BD⊥平面PAC;
(2)若PA=AB,求点D到平面PBC的距离;
(3)当平面PBC与平面PDC垂直时,求PA的长.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

15.关于x的不等式ax-b>0的解集是(-∞,1),则关于x的不等式$\frac{ax+b}{x-2}$≥0的解集为[-1,2).

查看答案和解析>>

同步练习册答案