精英家教网 > 高中数学 > 题目详情
已知双曲线(a>0,b>0)过点,且离心率为,设F1、F2是双曲线的两个焦点,点P为双曲线上一点
(1)求双曲线的方程;
(2)若△PF1F2是直角三角形,求点P的坐标.
【答案】分析:(1)利用双曲线(a>0,b>0)过点,且离心率为,求出几何量,可得双曲线的方程;
(2)设|PF1|=m,|PF2|=n,求出mn,利用面积公式,确定P的纵坐标,从而可求P的坐标.
解答:解:(1)∵双曲线(a>0,b>0)过点,且离心率为

∴c=2,∴b2=c2-a2=2,
∴双曲线的方程为
(2)设|PF1|=m,|PF2|=n,则
∴mn=4
=2
设P(x,y),则,∴|y|=1,∴y=±1
y=1时,x=±;y=-1时,x=±
∴P(,±1)或P(-,±1).
点评:本题考查双曲线的标准方程与性质,考查学生的计数能力,属于中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知双曲线-=1(a>0,b>0)的右焦点为F,右准线与一条渐近线交于点A,△OAF的面积为(O为原点),则两条渐近线的夹角为(    )

A.30°             B.45°              C.60°               D.90°

查看答案和解析>>

科目:高中数学 来源: 题型:

已知双曲线=1(a>0,b>0)的右焦点为F,右准线与一条渐近线交于点A,△OAF的面积为(O为原点),则两条渐近线的夹角为(    )

A.30°                B.45°                   C.60°                  D.90°

查看答案和解析>>

科目:高中数学 来源:2013-2014学年人教版高考数学文科二轮专题复习提分训练24练习卷(解析版) 题型:选择题

已知双曲线-=1(a>0,b>0)的一条渐近线方程是y=x,它的一个焦点在抛物线y2=24x的准线上,则双曲线的方程为(  )

(A) -=1 (B) -=1

(C) -=1 (D) -=1

 

查看答案和解析>>

科目:高中数学 来源:2010-2011学年江西省高三联合考试数学文卷 题型:填空题

已知双曲线a>0,b>0)的左右焦点分别为F1 F2 ,P 是双曲线上的一点,且P F1⊥P F2, 的面积为2 ab,则双曲线的离心率 e=________.

 

查看答案和解析>>

科目:高中数学 来源:2013届吉林省高二上学期期末考试理科数学 题型:选择题

已知双曲线(a>0,b>0)的两条渐近线均和圆C:x2+y2-6x+5=0相切,且双曲线的右焦点为圆C的圆心,则该双曲线的方程为(    )

(A)    (B)     (C) (D)

 

查看答案和解析>>

同步练习册答案