精英家教网 > 高中数学 > 题目详情

若命题“”是真命题,“”是假命题,则                        (   )

命题和命题都是假命题           命题和命题都是真命题

命题和命题“非”的真值不同     命题和命题的真值不同

 

【答案】

D

【解析】略

 

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知命题p:在区间[-1,1]上至少存在一个实数x,使不等式x2+ax-2>0成立;命题q:方程sinx•cosx=a+2,x∈(0,
34
π
]有两个解.若命题“p或q”是真命题,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知命题p:对于区间[-1,1]上任意实数x,不等式-x2-ax+2≥0成立;命题q:方程sinx•cosx=a+1有解.若命题“p或q”是真命题,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知命题p:关于x的方程
3
sinx•cosx+cos2x-a-
1
2
=0在R上有解;命题q:只有一个实数x满足不等式x2+2ax+2a≤0,若命题“p或q”是真命题,P且q为假命题,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

命题p:?x∈[1,2],x2-a≥0,命题q:方程x2+(2a-1)x+a2=0有两个大于1的不相等的根.若命题p或q是真命题,p且q是假命题,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知命题p:“?x∈[1,2],2x2-a≥0”,命题q:“?x∈R,x2+2ax+2-a=0”,若命题“p或q”是真命题,命题“p且q”是假命题,求实数a的取值范围.

查看答案和解析>>

同步练习册答案