精英家教网 > 高中数学 > 题目详情
2.在△ABC中,三角形的三个内角A、B、C满足2sinAcosB=sinC,试判断△ABC的形状.

分析 由条件利用诱导公式、两角和差的正弦公式求得sin(A-B)=0,根据A-B∈(-π,π),可得A-B=0,从而得出结论.

解答 解:△ABC中,sinC=sin[π-(A+B)]=sin(A+B)=sinAcosB+cosAsinB,
∵2sinAcosB=sinC,∴2sinAcosB=sinAcosB+cosAsinB,
∴sinAcosB-cosAsinB=0,∴sin(A-B)=0,
∵A,B∈(0,π),∴A-B∈(-π,π),∴A-B=0,
∴A=B,∴△ABC是等腰三角形.

点评 本题主要考查诱导公式,两角和差的正弦公式,根据三角函数的值求角,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

12.设Sn为数列{an}的前n项和,2an+(-1)n•an=2n+(-1)n•2n,则S10=$\frac{2728}{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.已知1≤lg(xy)≤4,-1$≤lg\frac{x}{y}$≤2,则lg$\frac{{x}^{2}}{y}$的取值范围是[-1,5].

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.若{1,2}⊆A?{1,2,3,4,5},则满足条件的集合A的个数为7.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.已知函数$y=\frac{1}{{a{x^2}-ax+1}}$的定义域R,则实数a的取值范围为(  )
A.a≤0或a>4B.0≤a<4C.0<a<4D.0≤a≤4

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.已知Sn是数列{an}的前n项和,且an=nsin$\frac{nπ}{3}$(n∈N*),则S50等于(  )
A.-24$\sqrt{3}$B.24$\sqrt{3}$C.-$\frac{75\sqrt{3}}{2}$D.$\frac{51}{2}\sqrt{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.函数y=$\sqrt{2x+1}$+lg(3-4x)的定义域为(  )
A.(-$\frac{1}{2}$,$\frac{3}{4}$)B.[-$\frac{1}{2}$,$\frac{3}{4}$)C.(-$\frac{1}{2}$,0)∪(0,+∞)D.(-∞,$\frac{1}{2}$]∪[$\frac{3}{4}$,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.若函数f(x)=aln(x+$\sqrt{{x^2}+1}$)+$\frac{b}{{{2^x}-1}}$+$\frac{b+6}{2}$(a,b为常数),在(0,+∞)上有最小值4,则函数f(x)在(-∞,0)上有(  )
A.最大值4B.最小值-4C.最大值2D.最小值-2

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.观察式子:
cos$\frac{2}{3}$π=-$\frac{1}{2}$;
cos$\frac{2}{5}$π+cos$\frac{4}{5}$π=-$\frac{1}{2}$;
cos$\frac{2}{7}$π+cos$\frac{4}{7}$π+cos$\frac{6}{7}$π=-$\frac{1}{2}$;
按此规律猜想第五个的等式为cos$\frac{2}{11}$π+cos$\frac{4}{11}$π+cos$\frac{6}{11}$π+cos$\frac{8}{11}$π+cos$\frac{10}{11}$π=-$\frac{1}{2}$.

查看答案和解析>>

同步练习册答案