精英家教网 > 高中数学 > 题目详情

【题目】酒后违法驾驶机动车危害巨大,假设驾驶人员血液中的酒精含量为(简称血酒含量,单位是毫克/100毫升),当时,为酒后驾车;当时,为醉酒驾车.如图为某市交管部分在一次夜间行动中依法查出的名饮酒后违法驾驶机动车者抽血检测后所得频率分布直方图(其中人数包含).

(Ⅰ)求查获的醉酒驾车的人数;

(Ⅱ)从违法驾车的人中按酒后驾车和醉酒驾车利用分层抽样抽取人做样本进行研究,再从抽取的人中任取人,求人中含有醉酒驾车人数的分布列和数学期望.

【答案】(I)人;(II)详见解析.

【解析】试题分析:(I)利用频率分布列直方图的性质即可得出.
(II)易知利用分层抽样抽取人中含有醉酒驾车者为人;所以的所有可能取值为,即可得出.

试题解析:

(Ⅰ)

故醉酒驾驶的人数为15(人).

(Ⅱ)易知利用分层抽样抽取人中含有醉酒驾车者为人;

所以的所有可能取值为

.

的分布列为

.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知函数.

,求函数的极值;

设函数,求函数的单调区间;

若在区间不存在,使得成立,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

(1)当时,求函数的单调区间与极值;

(2)当时,令,若上有两个零点,求实数的取值范围;

(3)当时,函数的图像上所有点都在不等式组所表示的平面区域内,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某商品在近30天内每件的销售价格P(元)与时间t(天)的函数是:P=
该商品的日销售量Q(件)与时间t(天)的函数关系是:Q=﹣t+40(0<t≤30,t∈N*),求这种商品的日销售金额的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

(Ⅰ)若,试讨论函数的单调性;

(Ⅱ)设,当对任意的恒成立时,求函数的最大值的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设函数,且),,(其中的导函数).

(1)当时,求的极大值点;

(2)讨论的零点个数.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知一个几何体的三视图如下图,大致画出它的直观图,并求出它的表面积和体积.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=﹣x2+ax(a∈R).
(1)当a=3时,求函数f(x)在[,2]上的最大值和最小值;
(2)当函数f(x)在(,2)单调时,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】正方体ABCD﹣A1B1C1D1中,点M,N分别在线段AB1、BC1上,且AM=BN.以下结论:①AA1⊥MN;②A1C1∥MN;③MN∥平面A1B1C1D1;④MN与A1C1异面,⑤MN与 A1C1成30°.其中有可能成立的结论的个数为(
A.5
B.4
C.3
D.2

查看答案和解析>>

同步练习册答案