精英家教网 > 高中数学 > 题目详情

【题目】已知函数f(x)=-a2 lnx+x2-ax(a∈R).

(1)试讨论函数f(x)的单调性:

(2)若函数f(x)在区间(1,e)中有两个零点,求a的取值范围.

【答案】(1)见解析(2)a∈(-e,-2).

【解析】分析:(1)根据函数定义域,求f'x=根据a 的取值情况分类讨论导数的符号,研究其单调性。

(2)根据(1)中单调区间,判断有两个零点的条件,列出不等式组求出a的范围即可。

详解:(1fx)的定义域为(0+).

fx=-a2lnx+x2-axaR

可知f'x=

所以若a>0,则当x∈(0a)时,f'x<0,函数fx)单调递减,

x∈(a+)时,f'x>0,则函数fx)单调递增;

a=0,则当f'x=2x>0在(0+)内恒成立,函数fx)单调递增;

a<0,则当x∈(0-)时,f'x<0,函数fx)单调递减,

x∈(-+)时,f'x>0,则函数fx)单调递增.

2)若a>0fx)在(0a)单调递减,在(a+)单调递增.

a<0fx)在(0-)单调递减,在(-+)单调递增.

由题意,若fx)在区间(1e)中有两个零点,则有

a无解或a∈(-e-2.

综上,a∈(-e-2).

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】某校为了分析本校高中生的性别与是否喜欢数学之间的关系,在高中生中随机地抽取了90名学生调查,得到了如下列联表:

喜欢数学

不喜欢数学

总计

30

45

25

45

总计

90

(1)求①②③④处分别对应的值;

(2)能有多大把握认为“高中生的性别与喜欢数学”有关?

附:

0.15

0.10

0.05

0.025

0.010

0.005

0.001

2.072

2.706

3.841

5.024

6.635

7.879

10.828

.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】定义在区间[a,b]上的连续函数y=f(x),如果,使得,则称为区间[a,b]上的中值点”.

下列函数:①中,在区间[0,1]中值点多于一个的函数序号为_________.(写出所有满足条件的函数的序号)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知△ABC的三个内角A、B、C的对边分别为a,b,c,且△ABC的面积S=
(1)求角B的大小;
(2)若a=2,且 , 求边c的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知点Pn(an,bn)满足an+1=an·bn+l ,bn+l =(nN*)且点P1的坐标为(1,-1).

(1)求过点P1,P2的直线l的方程;

(2)试用数学归纳法证明:对于n∈N*,点Pn都在(1)中的直线l上.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】ABC中,AsinC

)求B的大小;

)求cosA+cosC的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】近期,济南公交公司分别推出支付宝和微信扫码支付乘车活动,活动设置了一段时间的推广期,由于推广期内优惠力度较大,吸引越来越多的人开始使用扫码支付.某线路公交车队统计了活动刚推出一周内每一天使用扫码支付的人次,用表示活动推出的天数, 表示每天使用扫码支付的人次(单位:十人次),统计数据如表所示:

根据以上数据,绘制了散点图.

(1)根据散点图判断,在推广期内, (均为大于零的常数)哪一个适宜作为扫码支付的人次关于活动推出天数的回归方程类型?(给出判断即可,不必说明理由);

(2)根据(1)的判断结果及表中的数据,建立关于的回归方程,并预测活动推出第天使用扫码支付的 人次;

(3)推广期结束后,车队对乘客的支付方式进行统计,结果如下

车队为缓解周边居民出行压力,以万元的单价购进了一批新车,根据以往的经验可知,每辆车每个月的运营成本约为万元.已知该线路公交车票价为元,使用现金支付的乘客无优惠,使用乘车卡支付的乘客享受折优惠,扫码支付的乘客随机优惠,根据统计结果得知,使用扫码支付的乘客中有的概率享受折优惠,有的概率享受折优惠,有的概率享受折优惠.预计该车队每辆车每个月有万人次乘车,根据给数据以事件发生的频率作为相应事件发生的概率,在不考虑其它因素的条件下,按照上述收费标准,假设这批车需要年才能开始盈利,求的值.

参考数据:

其中其中

参考公式:

对于一组数据,其回归直线的斜率和截距的最小二乘估计公式分别为: .

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】己知抛物线y=x2+m的顶点M到直线l:(t为参数)的距离为1
(Ⅰ)求m:
(Ⅱ)若直线l与抛物线相交于A,B两点,与y轴交于N点,求|S△MAN﹣S△MBN|的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】《中国诗词大会》(二季)亮点颇多,十场比赛每场都有一首特别设计的开场诗词,在声光舞美的配合下,百人团齐声朗诵,别有韵味.若《将进酒》《山居秋暝》《望岳》《送杜少府之任蜀州》和另确定的两首诗词排在后六场,且《将进酒》排在《望岳》的前面,《山居秋暝》与《送杜少府之任蜀州》不相邻且均不排在最后,则后六场的排法有( )

A. B. C. D.

查看答案和解析>>

同步练习册答案