精英家教网 > 高中数学 > 题目详情

【题目】一只红铃虫的产卵数y和温度x有关,现收集了7组观测数据如下表:

温度x/

21

23

25

27

29

32

35

产卵个数y/

7

11

21

24

66

115

325

(I)根据散点图判断,哪一个适宜作为产卵数关于温度的回归方程类型(给出判断即可,不必说明理由);

(II)根据(I)的判断结果及表中数据,建立关于的回归方程;

Ⅲ)红铃虫是棉区危害较重的害虫,可从农业、物理和化学三个方面进行防治,其中农业方面防治有3种方法,物理方面防治有1种方法,化学方面防治3种方法,现从7种方法中选3种方法进行综合防治(即3种方法不能全部来自同一方面,至少来自两个方面),X表示在综合防治中农业方面的防治方法的种数,求X的分布列及数学期望E(X).

附:可能用到的公式及数据表中(表中 = = =

27.430

3.612

81.290

147.700

2763.764

705.592

40.180

对于一组数据,,……,,其回归线的斜率和截距的最小二乘估计分别为:

【答案】(1)(2)(3)见解析

【解析】

(I)由散点图可以判断,适宜作为作为产卵数y关于温度x的回归方程类型. (II)令先建立w关于x的线性回归方程式,再建立y关于x的回归方程.Ⅲ)依题意得随机变量X=0,1,2,再分别求它们对应的概率,即得X的分布列和期望.

(I)由散点图可以判断,适宜作为作为产卵数y关于温度x的回归方程类型。

(II)令先建立w关于x的线性回归方程式,由数据得

所以w关于x的线性回归方程为,

因此y关于x的回归方程为

Ⅲ)依题意得随机变量X=0,1,2,基本事件总数为

X=0时,选用物理方法1种、化学方法32,共有

X=1时,

X=2时,

所以X的分布列

X

0

1

2

P

数学期望E(X)

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】如图,已知三棱柱的侧棱垂直于底面, ,点分别是的中点.

(1)证明:平面

(2)设,当为何值时,平面,试证明你的结论.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图所示,点列满足:,均在坐标轴上,则向量()

A. B.

C. D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】两组各有7位病人,他们服用某种药物后的康复时间(单位:天)记录如下:

组:10111213141516

组:121315161714

假设所有病人的康复时间互相独立,从两组随机各选1人,组选出的人记为甲,组选出的

人记为乙.

)求甲的康复时间不少于14天的概率;

)如果,求甲的康复时间比乙的康复时间长的概率;

)当为何值时,两组病人康复时间的方差相等?(结论不要求证明)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在“五四青年节”到来之际,启东中学将开展一系列的读书教育活动.为了解高二学生读书教育情况,决定采用分层抽样的方法从高二年级四个社团中随机抽取12名学生参加问卷调査.已知各社团人数统计如下:

(1)若从参加问卷调查的12名学生中随机抽取2名,求这2名学生来自同一个社团的概率;

(2)在参加问卷调查的12名学生中,从来自三个社团的学生中随机抽取3名,用表示从社团抽得学生的人数,求的分布列和数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设数列的前项和

1)求数列的通项公式;

2)令,记数列n项和为,求

3)利用第二问结果,设是整数,问是否存在正整数n,使等式成立?若存在,求出和相应的值;若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在四棱锥中,底面是边长为的菱形, 平面 的交点, 为棱上一点.

(1)证明:平面平面

(2)若平面,三棱锥的体积为,求的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在四棱锥P—ABCD中,底面ABCD是正方形,侧棱PD⊥底面ABCD,PD=DC,E、F分别是PC、AD中点,

(1)求证:DE//平面PFB;

(2)求PB与面PCD所成角的正切值。

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】下列有关命题的说法正确的是___(请填写所有正确的命题序号).

①命题“若,则”的否命题为:“若,则”;

②命题“若,则”的逆否命题为真命题;

③条件,条件,则的充分不必要条件;

④已知时,,若是锐角三角形,则.

查看答案和解析>>

同步练习册答案