精英家教网 > 高中数学 > 题目详情
3.若从4名数学教师中任意选出2人,分配到4个班级任教,每人任教2个班级,则不同的任课方案有36种(用数字作答).

分析 本题是分步计数问题,首先从4个教师中选2个,有C42种结果,再从4个班中选2个班给其中一个教师,剩下的两个班给另外一个教师,有C42种结果,利用乘法原理得到结果.

解答 解:由题意知这是一个分步计数问题,
首先从4个教师中选2个,有C42=6种结果,
再从4个班中选2个班给其中一个教师,剩下的两个班给另外一个教师,有C42=6种结果,
∴根据分步计数原理知共有6×6=36种结果
故答案为:36.

点评 本题考查分步计数原理,解题的关键是从教师中选元素以后,再从班级中选元素,两个方面的方法数相乘,得到不同的任课方案.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

13.计算:sin$\frac{7π}{3}$-$\frac{\sqrt{2}}{2}$cos$\frac{11π}{4}$+$\frac{4}{3}$sin2$\frac{π}{6}$-cos$\frac{4}{3}$π.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.用反证法证明命题“三角形的内角至多有一个钝角”时,假设正确的是(  )
A.假设至少有一个钝角
B.假设至少有两个钝角
C.假设没有一个钝角
D.假设没有一个钝角或至少有两个钝角

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.已知x>0,y>0,2x+y=1,若4x2+y2+$\sqrt{xy}$-m<0恒成立,则m的取值范围是(  )
A.m<$\frac{17}{16}$B.m>$\frac{17}{16}$C.m≤$\frac{17}{16}$D.m>0

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.一个多面体的直观图及三视图如图所示(其中M,N分别是AF,BC的中点)
(1)求证:MN∥平面CDEF;
(2)求多面体A-CDEF的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.甲、乙两人独立地解同一道题,甲、乙解对的概率分别为p1,p2,那么至少有1人解对的概率为1-(1-p1)(1-p2).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.某校在一次趣味运动会的颁奖仪式上,高一、高二、高三各代表队人数分别为120人、120人、n人.为了活跃气氛,大会组委会在颁奖过程中穿插抽奖活动,并用分层抽样的方法从三个代表队中共抽取20人在前排就坐,其中高二代表队有6人.
(1)求n的值;
(2)把在前排就坐的高二代表队6人分别记为a,b,c,d,e,f,现随机从中抽取2人上台抽奖.求a和b至少有一人上台抽奖的概率;
(3)抽奖活动的规则是:代表通过操作按键使电脑自动产生两个[0,1]之间的均匀随机数x,y,并按如上图所示的程序框图执行.若电脑显示“中奖”,则该代表中奖;若电脑显示“谢谢”,则不中奖,求该代表中奖的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.从1,3,5,7,9五个数字中选2个,0,2,4,6,8五个数字中选3个,能组成多少个无重复数字的五位数?

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.已知角α的终边与以坐标原点为圆心,以1为半径的圆交于点P(sin$\frac{2π}{3}$,cos$\frac{2π}{3}$),则角α的最小正值为(  )
A.$\frac{11π}{6}$B.$\frac{5π}{3}$C.$\frac{5π}{6}$D.$\frac{2π}{3}$

查看答案和解析>>

同步练习册答案