精英家教网 > 高中数学 > 题目详情
8.已知函数f(x)=lnx+2.
(1)若f(x)的切线过点P(0,2),求此切线的方程;
(2)若方程f(x)=kx+k(k>0)在区间[1,e](其中e为自然数的底数)内有实根,求k的取值范围.

分析 (1)设出切点坐标,表示出切线方程,将P(0,2)代入切线,求出切点的坐标,从而求出切线方程即可;
(2)求出k=$\frac{lnx+2}{x+1}$,(x∈[1,e]),设h(x)=$\frac{lnx+2}{x+1}$,根据函数的单调性求出h(x)在[1,e]的最值,从而求出k的范围即可.

解答 解:(1)设切点是(x0,lnx0+2),
f′(x)=$\frac{1}{x}$,k=$\frac{1}{{x}_{0}}$,
∴切线方程是y-(lnx0+2)=$\frac{1}{{x}_{0}}$(x-x0),
此直线过P(0,2),代入得:lnx0=1,
∴x0=e,
∴切线方程是y-3=$\frac{1}{e}$(x-e),
即y=$\frac{1}{e}$x+2;
(2)由f(x)=kx+k,得k=$\frac{lnx+2}{x+1}$,(x∈[1,e]),
设h(x)=$\frac{lnx+2}{x+1}$,h′(x)=$\frac{\frac{1}{x}-lnx-1}{{(x+1)}^{2}}$,
设p(x)=$\frac{1}{x}$-lnx-1,p′(x)=-$\frac{1}{{x}^{2}}$-$\frac{1}{x}$<0,
∴p(x)在[1,e]递减,
∴x∈[1,e]时,p(x)≤p(1)=0,
∴h′(x)≤0,
∴h(x)在[1,e]递减,
∴h(x)最小值=h(e)=$\frac{3}{e+1}$,
h(x)最大值=h(1)=1,
∴$\frac{3}{e+1}$≤k≤1时,f(x)=kx+k,(k>0)在[1,e]内有实根,
∴k的范围是[$\frac{3}{e+1}$,1].

点评 本题考查了函数的单调性、最值问题,考查曲线的切线方程问题,考查导数的应用,是一道中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

18.2015年12月10日,我国科学家屠呦呦教授由于在发现青蒿素和治疗疟疾的疗法上的贡献获得诺贝尔医学奖,以青蒿素类药物为主的联合疗法已经成为世界卫生组织推荐的抗疟疾标准疗法,目前,国内青蒿人工种植发展迅速,调查表明,人工种植的青蒿的长势与海拔高度、土壤酸碱度、空气湿度的指标有极强的相关性,现将这三项的指标分别记为x,y,z,并对它们进行量化:0表示不合格,1表示临界合格,2表示合格,再用综合指标ω=x+y+z的值评定人工种植的青蒿的长势等级:若ω≥4,则长势为一级;若2≤ω≤3,则长势为二级;若0≤ω≤1,则长势为三级;为了了解目前人工种植的青蒿的长势情况,研究人员随机抽取了10块青蒿人工种植地,得到如表结果:
种植地编号A1A2A3A4A5
(x,y,z)(0,1,0)(1,2,1)(2,1,1)(2,2,2)(0,1,1)
种植地编号A6A7A8A9A10
(x,y,z)(1,1,2)(2,1,2)(2,0,1)(2,2,1)(0,2,1)
(1)若该地有青蒿人工种植地180个,试估计该地中长势等级为三级的个数;
(2)从长势等级为一级的青蒿人工种植地中随机抽取两个,求这两个人工种植地的综合指标ω均为4的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.已知函数f(x)=$\sqrt{3}$sinxcosx-sin2x-2cos2x,x∈R.
(1)求函数f(x)的最小正周期和单调递减区间;
(2)函数y=f(x)的图象向右移动$\frac{π}{12}$个单位长度后得到以y=g(x)的图象,求y=g(x)在[0,$\frac{π}{2}$]上的最大值和最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.已知$\sqrt{2+\frac{2}{3}}$=2$\sqrt{\frac{2}{3}}$,$\sqrt{3+\frac{3}{8}}$=3$\sqrt{\frac{3}{8}}$,$\sqrt{4+\frac{4}{15}}$=4$\sqrt{\frac{4}{15}}$,…,若$\sqrt{a+\frac{7}{t}}$=a$\sqrt{\frac{7}{t}}$(a,t均为正实数),类比以上等式,可推测a,t的值,则t-a=(  )
A.31B.41C.55D.71

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.直线ρsinθ=2与圆ρ=2的位置关系是相切.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.若x,y满足不等式组$\left\{\begin{array}{l}{2x-3y-6≥0}\\{x+y-3≥0}\\{x≤\frac{7}{2}}\end{array}\right.$,z=x-y的最大值为(  )
A.1B.2C.3D.4

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.在Rt△ABC 中,∠C=90°,BE平分∠ABC交AC于E,D是AB上一点,且DE⊥BE.
(1)求证:AC是△BDE的外接圆的切线;
(2)若AD=2$\sqrt{6}$,AE=6$\sqrt{2}$,求CE的长.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.画出下列函数的简图.
(1)y=$\frac{x}{2}$+$\frac{2}{x}$;
(2)y=x-$\frac{1}{x}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

15.在△ABC中,${\overrightarrow{AB}}^{2}$=$\overrightarrow{BA}$•$\overrightarrow{BC}$,$\overrightarrow{OA}$+$\overrightarrow{OC}$+$\overrightarrow{AB}$=$\overrightarrow{0}$,且|$\overrightarrow{OA}$|=|$\overrightarrow{AB}$|=1,则$\overrightarrow{CA}$•$\overrightarrow{CB}$等于3.

查看答案和解析>>

同步练习册答案