精英家教网 > 高中数学 > 题目详情
.三点(3,10),(7,20),(11,24)的回归方程是
A.y=5-17xB.y=-17+5x
C. y=17+5xD. y=17-5x
B
解:因为三点(3,10),(7,20),(11,24)的回归方程,可以根据题意得到样本中心点,那么可知为(7,18),那么符合题意的只有选项B
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

某校的研究性学习小组为了研究中学生的身高与性别情况,在该校随机抽出80名17至18周岁的学生,其中身高的男生有30人,女生4人;身高<170的男生有10人。
(1)根据以上数据建立一个列联表:

(2)请问在犯错误的概率不超过0.001的前提下,该校17至18周岁的学生的身高与性别是否有关?
参考公式:
参考数据:

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

下表是降耗技术改造后生产甲产品过程中记录的产量x(吨)与相应的生产能耗y(吨)标准煤的几组对应数据,根据表中提供的数据,求出y关于x的线性回归方程 ,那么表中m的值为(    )
x
3
4
5
6
y
2.5
m
4
4.5
A. 4     B. 3.5      C. 4.5    D. 3

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

一位母亲记录了她的儿子3~9岁的身高数据,并由此建立身高与年龄的回归模型为y=7.19x+73.93,用这个模型预测她的儿子10岁时的身高,则正确的叙述是
A.身高一定是145.83 cmB.身高在145.83 cm以上
C.身高在145.83 cm左右D.身高在145.83 cm以下

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

一位母亲记录了儿子3~9岁的身高,由此建立的身高与年龄的回归直线方程为
,据此可以预测这个孩子10岁时的身高,则正确的叙述是(    ) 
A.身高一定是145.83cmB.身高超过146.00cm
C.身高低于145.00cmD.身高在145.83cm左右

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

一台机器使用的时候较长,但还可以使用,它按不同的转速生产出来的某机械零件有一些会有缺点,每小时生产有缺点零件的多少,随机器的运转的速度而变化,下表为抽样试验的结果:
转速χ(转/秒)
16
14
12
8
每小时生产有缺点的零件数y(件)
11
9
8
5
 
(1)画出散点图,并通过散点图确定变量y对χ是否线性相关;
(2)如果y对χ有线性相关关系,求回归直线方程;
(3)若实际生产中,允许每小时的产品中有缺点的零件最多为10个,那么机器的运转速度应控制在什么范围内?(精确到0.0001)
参考公式:线性回归方程的系数公式:

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

对某市工薪阶层关于“楼市限购政策”的态度进行调查,随机抽查了50人,他们月收入(单位:百元)的频数分布及对“楼市限购政策”赞成人数如下表:
月收入(单位百元)
[15,25
[25,35
[35,45
[45,55
[55,65
[65,75
频数
5
10
15
10
5
5
赞成人数
4
8
12
5
2
1
(Ⅰ)根据以上统计数据填写下面2×2列联表,并回答是否有99%的把握认为月收入以5500元为分界点对“楼市限购政策” 的态度有差异?
 
月收入不低于55百元的人数
月收入低于55百元的人数
合计
赞成
3

 
不赞成

11
 
合计
 
 
50
(Ⅱ)若从月收入在[55,65)的被调查对象中随机选取两人进行调查,求至少有一人赞成“楼市限购政策”的概率.
(参考公式:,其中.)
参考值表:
P()
0.50
0.40
0.25
0.15
0.10
0.05
0.025
0.010
0.005
0.001

0.455
0.708
1.323
2.072
2.706
3.841
5.024
6.635
7.879
10.828

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

若用水量x与某种产品的产量y的回归方程是 ,则当用水量为50kg时,预计的某种产品的产量是(  ) 
A.大于1350kgB.小于 1350kgC.1350kgD.以上都不对

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

某连锁经营公司所属5个零售店某月的销售额和利润额资料如下表
商店名称
A
B
C
D
E
E
销售额(x)/千万元
3
5
6
7
9
9
利润额(y)/百万元
2
3
3
4
5
(1)画出销售额和利润额的散点图.(2)若销售额和利润额具有相关关系,用最小二乘法计算利润额y对销售额x的回归直线方程.

查看答案和解析>>

同步练习册答案