A. | 0°<A<30° | B. | 0°<A<30°或90°<A<120° | ||
C. | 90°<A<120° | D. | 30°<A<60°或90°<A<120° |
分析 运用正弦定理,得到sinA+sinB=λsinC=$\frac{\sqrt{3}}{2}$λ,再由两角和差的正弦公式,得到sin(A+30°)=$\frac{1}{2}$λ,运用正弦函数的图象和性质,即可得到A的范围.
解答 解:由于△ABC中,∠C=60°,
则∠A+∠B=120°,
运用正弦定理,可得,
a+b=λc即为sinA+sinB=λsinC=$\frac{\sqrt{3}}{2}$λ,
即有sinA+sin(120°-A)=$\frac{3}{2}$sinA+$\frac{\sqrt{3}}{2}$cosA=$\frac{\sqrt{3}}{2}$λ,
即有sin(A+30°)=$\frac{1}{2}$λ,
由于0°<A<120°,则A+30°∈(30°,150°),
由于1<λ<$\sqrt{3}$,则$\frac{1}{2}$<sin(A+30°)<$\frac{\sqrt{3}}{2}$,
即有30°<A+30°<60°或120°<A+30°<150°,
解得,A∈(0°,30°)∪(90°,120°).
故选:B.
点评 本题考查解三角形的正弦定理,考查两角和差的正弦公式,考查正弦函数的图象和性质,考查运算能力,属于中档题.
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | (-∞,3] | B. | [2,3] | C. | (2,3] | D. | (2,3) |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com