精英家教网 > 高中数学 > 题目详情
16.360和504的最大公约数是72.

分析 可以利用辗转相除法或更相减损法求出两个数的最大公约数.

解答 解法一:利用更相减损法求两个数的最大公约数:
504-360=144,
360-144=216,
216-144=72,
144-72=72,
∴360和504的最大公约数是72.
解法二:利用辗转相除法求两个数的最大公约数:
504=360×1+144,
360=144×2+72,
144=72×2+0,
∴360和504的最大公约数是72
故答案为:72

点评 本题考查的知识点是利用辗转相除法或更相减损法求两个数的最大公约数,握辗转相除法或更相减损法是解题的关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

6.已知函数f(x)=$\left\{\begin{array}{l}{log_2}(-x),\;\;x<0\\{3^{x-1}},\;\;\;\;\;\;\;\;\;\;x≥0\end{array}$,则f(1)=1,f(-6)=log26.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.已知F1,F2分别是离心率为$\frac{3}{5}$的椭圆E:$\frac{{x}^{2}}{{a}^{2}}+\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)的左右焦点,P为椭圆E上一点,且△F1F2P的周长为16.
(1)求椭圆E的方程;
(2)若|PF1|=$\frac{16}{5}$,求点P到椭圆左顶点A的距离.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.给定两个单位平面向量$\overrightarrow{OA},\overrightarrow{OB}$,其夹角为120°,以O为圆心的圆弧AB上任一点,且$\overrightarrow{OC}=x\overrightarrow{OA}+y\overrightarrow{OB}$(x,y∈R),则满足x+y≥$\sqrt{2}$的概率为(  )
A.$2-\sqrt{2}$B.$\frac{3}{4}$C.$\frac{π}{4}$D.$\frac{2}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.已知命题p:m>4;命题q:方程4x2+4(m-2)x+9=0有实根.若p∧q为真,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.若双曲线x2-ay2=1的离心率为$\frac{\sqrt{6}}{2}$,则正数a的值为2.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.已知α,β为三角形的内角,则“α>β”是“sinα>sinβ”的充要条件(填“充分必要”、“充分不必要”、“必要不充分”、“既不充分也不必要”).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.已知方程$\frac{{x}^{2}}{4-m}-\frac{{y}^{2}}{2+m}=1$.
(1)若方程表示双曲线,求实数m的取值范围.
(2)若方程表示椭圆,且椭圆的离心率为$\frac{\sqrt{3}}{2}$,求实数m的值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.“m>-2”是“函数f(x)=log2(2x+m)的图象与直线x=-1有交点”的(  )
A.充分不必要条件B.必要不充分条件
C.充要条件D.既不充分也不必要条件

查看答案和解析>>

同步练习册答案