精英家教网 > 高中数学 > 题目详情

设函数数学公式的极值点.
(I)若函数f(x)在x=2的切线平行于3x-4y+4=0,求函数f(x)的解析式;
(II)若f(x)=0恰有两解,求实数c的取值范围.

解:(I)求导函数,可得
∵x=1是函数f(x)的极值点,函数f(x)在x=2的切线平行于3x-4y+4=0,
∴f′(1)=0,f′(2)=

∴b=-,c=
∴函数f(x)的解析式为
(II)(x>0)
①若c<0,则f(x)在(0,1)上单调递减,在(1,+∞)上单调递增,f(x)=0恰有两解,则f(1)<0,即

②若0<c<1,则f极大(x)=f(c)=clnc+,f极小(x)=f(1)=
∵b=-1-c,∴f极大(x)=clnc,f极小(x)=
∴f(x)=0不可能有两解
③若c≥1,则f极小(x)=clnc,f极大(x)=,∴f(x)=0只有一解
综上可知,实数c的取值范围为
分析:(I)求导函数,利用x=1是函数f(x)的极值点,函数f(x)在x=2的切线平行于3x-4y+4=0,可得f′(1)=0,f′(2)=,从而可求函数f(x)的解析式;
(II)(x>0),分类讨论:①若c<0,则f(x)在(0,1)上单调递减,在(1,+∞)上单调递增,f(x)=0恰有两解,则f(1)<0;②若0<c<1,则f极大(x)=clnc,f极小(x)=;③若c≥1,则f极小(x)=clnc,f极大(x)=,由此可确定实数c的取值范围.
点评:本题考查导数知识的运用,考查函数的单调性与极值,考查分类讨论思想,解题的关键是正确分类.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

设函数f(x)=clnx+
12
x2+bx(b,c∈R,c≠0),且x=1为f(x)
的极值点.
(I)若函数f(x)在x=2的切线平行于3x-4y+4=0,求函数f(x)的解析式;
(II)若f(x)=0恰有两解,求实数c的取值范围.

查看答案和解析>>

科目:高中数学 来源:河南省模拟题 题型:解答题

设函数的极值点.
(I)若函数f(x)在x=2的切线平行于3x﹣4y+4=0,求函数f(x)的解析式;
(II)若f(x)=0恰有两解,求实数c的取值范围.

查看答案和解析>>

科目:高中数学 来源:2012年河南省郑州市高三考前检测数学试卷2(文科)(解析版) 题型:解答题

设函数的极值点.
(I)若函数f(x)在x=2的切线平行于3x-4y+4=0,求函数f(x)的解析式;
(II)若f(x)=0恰有两解,求实数c的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

设函数数学公式的极值点.
(I)若x=1为f(x)的极大值点,求函数的单调区间(用c表示);
(II)若f(x)=0恰有两解,求实数c的取值范围.

查看答案和解析>>

同步练习册答案