¶ÔÊýÁÐ{an}£¬¹æ¶¨{¡÷an}ΪÊýÁÐ{an}µÄÒ»½×²î·ÖÊýÁУ¬ÆäÖС÷an=an+1-an£¨n¡ÊN*£©£»Ò»°ãµØ£¬¹æ¶¨{¡÷kan}ΪÊýÁÐ{an}µÄk½×²î·ÖÊýÁУ¬ÆäÖС÷kan=¡÷k-1an+1-¡÷k-1an£¨k¡ÊN*£¬k¡Ý2£©£®ÒÑÖªÊýÁÐ{an}µÄͨÏʽan=n2+n£¨n¡ÊN*£©£¬ÔòÒÔϽáÂÛÕýÈ·µÄÐòºÅΪ
¢Ù¢Ü
¢Ù¢Ü
£®
¢Ù¡÷an=2n+24£»       
¢ÚÊýÁÐ{¡÷3an}¼ÈÊǵȲîÊýÁУ¬ÓÖÊǵȱÈÊýÁУ»
¢ÛÊýÁÐ{¡÷an}µÄÇ°nÏîÖ®ºÍΪan=n2+n£»   
¢Ü{¡÷2an}µÄÇ°2014ÏîÖ®ºÍΪ4028£®
·ÖÎö£º¸ù¾Ý¡÷an=an+1-an ¼ÆËã¿ÉµÃ¢Ù²»ÕýÈ·£®¸ù¾Ý¡÷2an=2£¨n+1£©+2-£¨2n+2£©=2£¬µÃ{¡÷2an}ÊÇÊ×ÏîΪ2£¬¹«²îΪ0µÄµÈ²îÊýÁУ¬¹Ê¶ÔÊýÁÐ{¡÷3an}£¬¡÷3an=2-2=0£¬¹Ê¢Ú²»ÕýÈ·£®
¼ÆËãÊýÁÐ{¡÷an}µÄÇ°nÏîÖ®ºÍµÄÖµ£¬¿ÉµÃ¢Û²»ÕýÈ·£® ¸ù¾Ý{¡÷2an}ÊÇÊ×ÏîΪ2£¬¹«²îΪ0µÄµÈ²îÊýÁУ¬ÇóµÃ{¡÷2an}µÄÇ°2014ÏîÖ®ºÍµÄÖµ£¬¿ÉµÃ¢ÜÕýÈ·£®
½â´ð£º½â£ºÓÉÓÚ¡÷an=an+1-an£¨n¡ÊN*£©£¬{¡÷kan}ΪÊýÁÐ{an}µÄk½×²î·ÖÊýÁУ¬¡÷kan=¡÷k-1an+1-¡÷k-1an£¬an=n2+n£®
¹Ê¡÷an=an+1-an =£¨n+1£©2+£¨n+1£©-[n2+n]=2n+2£¬¹Ê¢Ù²»ÕýÈ·£®
ÓÉÓÚ¡÷2an=2£¨n+1£©+2-£¨2n+2£©=2£¬¡à{¡÷2an}ÊÇÊ×ÏîΪ2£¬¹«²îΪ0µÄµÈ²îÊýÁУ¬¹Ê¶ÔÊýÁÐ{¡÷3an}£¬¡÷3an=2-2=0£¬¹ÊÊýÁÐ{¡÷3an}ÊǵȲîÊýÁУ¬µ«²»ÊǵȱÈÊýÁУ¬¹Ê¢Ú²»ÕýÈ·£®
ÊýÁÐ{¡÷an}µÄÇ°nÏîÖ®ºÍΪ¡÷a1+¡÷a2+¡­+¡÷an=a2-a1+a3-a2+¡­+an+1-an=an+1-a1=£¨n+1£©2+£¨n+1£©-[1+1]=n2+3n£¬¹Ê¢Û²»ÕýÈ·£®
ÓÉÓÚ¡÷2an=2£¨n+1£©+2-£¨2n+2£©=2£¬¡à{¡÷2an}ÊÇÊ×ÏîΪ2£¬¹«²îΪ0µÄµÈ²îÊýÁУ¬{¡÷2an}µÄÇ°2014ÏîÖ®ºÍΪ 2¡Á2014=4028£¬¹Ê¢ÜÕýÈ·£®
µãÆÀ£º±¾Ð¡ÌâÒÔж¨ÒåΪÔØÌåÖ÷Òª¿¼²éµÈ²îÊýÁС¢µÈ±ÈÊýÁеĶ¨ÒåµÄ»ù´¡ÖªÊ¶£¬¿¼²é¹Û²ì¡¢²ÂÏë²¢½øÐÐÖ¤Ã÷µÄÊýѧ˼Ïë·½·¨£¬»¹¿¼²éÁË°ÑеĶ¨Òåת»¯ÎªÀûÓÃËùѧ֪ʶ½øÐÐÇó½âµÄÄÜÁ¦£®
Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

8¡¢¶ÔÊýÁÐ{an}£¬¹æ¶¨{¡÷an}ΪÊýÁÐ{an}µÄÒ»½×²î·ÖÊýÁУ¬ÆäÖС÷an=an+1-an£¨n¡ÊN£©£®¶Ô×ÔÈ»Êýk£¬¹æ¶¨{¡÷kan}Ϊ{an}µÄk½×²î·ÖÊýÁУ¬ÆäÖС÷kan=¡÷k-1an+1-¡÷k-1an=¡÷£¨¡÷k-1an£©£®
£¨1£©ÒÑÖªÊýÁÐ{an}µÄͨÏʽan=n2+n£¨n¡ÊN£©£¬£¬ÊÔÅжÏ{¡÷an}£¬{¡÷2an}ÊÇ·ñΪµÈ²î»òµÈ±ÈÊýÁУ¬ÎªÊ²Ã´£¿
£¨2£©ÈôÊýÁÐ{an}Ê×Ïîa1=1£¬ÇÒÂú×ã¡÷2an-¡÷an+1+an=-2n£¨n¡ÊN£©£¬ÇóÊýÁÐ{an}µÄͨÏʽ£®
£¨3£©£¨Àí£©¶Ô£¨2£©ÖÐÊýÁÐ{an}£¬ÊÇ·ñ´æÔڵȲîÊýÁÐ{bn}£¬Ê¹µÃb1Cn1+b2Cn2+¡­+bnCnn=an¶ÔÒ»ÇÐ×ÔÈ»n¡ÊN¶¼³ÉÁ¢£¿Èô´æÔÚ£¬ÇóÊýÁÐ{bn}µÄͨÏʽ£»Èô²»´æÔÚ£¬ÔòÇë˵Ã÷ÀíÓÉ£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

¶ÔÊýÁÐ{an}£¬¹æ¶¨{¡÷an}ΪÊýÁÐ{an}µÄÒ»½×²î·ÖÊýÁУ¬ÆäÖС÷an=an+1-an£¨n¡ÊN*£©£»Ò»°ãµØ£¬¹æ¶¨{¡÷kan} ÎªÊýÁÐ{an}µÄk½×²î·ÖÊýÁУ¬ÆäÖС÷kan=¡÷k-1an+1-¡÷k-1an£¨k¡ÊN*£¬k¡Ý2£©£®ÒÑÖªÊýÁÐ{an}µÄͨÏʽan=n2+n£¨n¡ÊN*£©£¬ÔòÒÔϽáÂÛÕýÈ·µÄÐòºÅΪ
¢Ù¢Ü
¢Ù¢Ü
£®
¢Ù¡÷an=2n+2£»       
¢ÚÊýÁÐ{¡÷3an}¼ÈÊǵȲîÊýÁУ¬ÓÖÊǵȱÈÊýÁУ»
¢ÛÊýÁÐ{¡÷an}µÄÇ°nÏîÖ®ºÍΪan=n2+n£»   
¢Ü{¡÷2an}µÄÇ°2014ÏîÖ®ºÍΪ4028£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

¶ÔÊýÁÐ{an}£¬¹æ¶¨{Van}ΪÊýÁÐ{an}µÄÒ»½×²î·ÖÊýÁУ¬ÆäÖÐVan=an+1-an£¨n¡ÊN*£©£®¶ÔÕýÕûÊýk£¬¹æ¶¨{Vkan}Ϊ{an}µÄk½×²î·ÖÊýÁУ¬ÆäÖÐVkan=Vk-1an+1-Vk-1an=V£¨VK-1an£©£¨¹æ¶¨V0an=an£©£®
£¨¢ñ£©ÒÑÖªÊýÁÐ{an}µÄͨÏʽan=n2+n£¨n¡ÊN*£©£¬ÊÇÅжÏ{Van}ÊÇ·ñΪµÈ²îÊýÁУ¬²¢ËµÃ÷ÀíÓÉ£»
£¨¢ò£©ÈôÊýÁÐ{an}µÄÊ×Ïîa1=1£¬ÇÒÂú×ãV2an-Van+1+an=-2n£¨n¡ÊN*£©£¬ÇóÊýÁÐ{an}µÄͨÏʽ£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

£¨2012•¹ðÁÖһģ£©¶ÔÊýÁÐ{an}£¬¹æ¶¨{¡÷an}ΪÊýÁÐ{an}µÄÒ»½×²î·ÖÊýÁУ¬ÆäÖС÷an=an+1-an£¨n¡ÊN*£©£®¹æ¶¨{¡÷2an}Ϊ{an}µÄ¶þ½×²î·ÖÊýÁУ¬ÆäÖС÷2an=¡÷an+1-¡÷an£®
£¨¢ñ£©ÒÑÖªÊýÁÐ{an}µÄͨÏʽan=n2+n(n¡ÊN*)£¬ÊÔÅжÏ{¡÷an}£¬{¡÷2an}ÊÇ·ñΪµÈ²î»òµÈ±ÈÊýÁУ¬²¢ËµÃ÷ÀíÓÉ£»
£¨¢ò£©ÈôÊýÁÐ{an}Ê×Ïîa1=1£¬ÇÒÂú×ã¡÷2an-¡÷an+1+an=-2n(n¡ÊN*)£¬ÇóÊýÁÐ{an}µÄͨÏʽ£®

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸