【题目】已知函数f(x)是定义在R上的奇函数,若g(x)=f(x+1)+5,g′(x)为g(x)的导函数,对x∈R,总有g′(x)>2x,则g(x)<x2+4的解集为 .
【答案】(﹣∞,﹣1)
【解析】解:因为函数f(x)是定义在R上的奇函数, 所以函数f(x)关于原点对称,
又g(x)=f(x+1)+5,
故g(x)的图象关于点(﹣1,5)对称,
令h(x)=g(x)﹣x2﹣4,
∴h′(x)=g′(x)﹣2x,
∵对x∈R,g′(x)>2x,
∴h(x)在R上是增函数,
又h(﹣1)=g(﹣1)﹣(﹣1)2﹣4=0,
∴g(x)<x2+4的解集是(﹣∞,﹣1),
所以答案是:(﹣∞,﹣1).
【考点精析】解答此题的关键在于理解利用导数研究函数的单调性的相关知识,掌握一般的,函数的单调性与其导数的正负有如下关系: 在某个区间内,(1)如果,那么函数在这个区间单调递增;(2)如果,那么函数在这个区间单调递减.
科目:高中数学 来源: 题型:
【题目】如图,在正方体ABCD﹣A1B1C1D1中,棱长为a,M、N分别为A1B和AC上的点,A1M=AN= ,则MN与平面BB1C1C的位置关系是( )
A.相交
B.平行
C.垂直
D.不能确定
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知数列{an}中,a3=5,a5+a6=20,且2 ,2 ,2 成等比数列,数列{bn}满足bn=an﹣(﹣1)nn.
(Ⅰ)求数列{bn}的通项公式;
(Ⅱ)设sn是数列{bn}前n项和,求sn .
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数f(x)= sinωx cosωx﹣sin2ωx+1(ω>0)相邻两条对称轴之间的距离为 .
(Ⅰ)求ω的值及函数f(x)的单调递减区间;
(Ⅱ)已知a,b,c分别为△ABC中角A,B,C的对边,且满足a= ,f(A)=1,求△ABC 面积 S 的最大值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数f(x)=xex﹣1﹣a(x+lnx),a∈R.
(1)若曲线y=f(x)在点(1,f(1))处的切线为x轴,求a的值:
(2)在(1)的条件下,求f(x)的单调区间;
(3)若x>0,f(x)≥f(m)恒成立,且f(m)≥0,求证:f(m)≥2(m2﹣m3).
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆C: (a>b>0)经过点( ,1),过点A(0,1)的动直线l与椭圆C交于M、N两点,当直线l过椭圆C的左焦点时,直线l的斜率为 .
(1)求椭圆C的方程;
(2)是否存在与点A不同的定点B,使得∠ABM=∠ABN恒成立?若存在,求出点B的坐标;若不存在,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】一袋中有7个大小相同的小球,其中有2个红球,3个黄球,2个蓝球,从中任取3个小球.
(I)求红、黄、蓝三种颜色的小球各取1个的概率;
(II)设X表示取到的蓝色小球的个数,求X的分布列和数学期望.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知双曲线C: =1(a>0,b>0)的左、右焦点分别为F1 , F2 , O为坐标原点,P是双曲线在第一象限上的点且满足|PF1|=2|PF2|,直线PF2交双曲线C于另一点N,又点M满足 = 且∠MF2N=120°,则双曲线C的离心率为( )
A.
B.
C.
D.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数f(x)=|x﹣ |﹣|2x+1|. (Ⅰ)求f(x)的值域;
(Ⅱ)若f(x)的最大值时a,已知x,y,z均为正实数,且x+y+z=a,求证: + + ≥1.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com