精英家教网 > 高中数学 > 题目详情
设数列{an}的前n项和为Sn,已知a1=1,Sn+1=4an+2
(1)设bn=an+1-2an,证明数列{bn}是等比数列;
(2)令cn=
an
2n-1
,求cn及数列an
考点:数列的求和,等比关系的确定
专题:等差数列与等比数列
分析:(1)依题意,可求得b1=a2-2a1=3,an+2-2an+1=2(an+1-2an),即bn+1=2bn,从而可证数列{bn}为等比数列;
(2)由(1)知等比数列{bn}中b1=3,公比q=2,可求得
an+1
2n+1
-
an
2n
=
3
4
,知数列{
an
2n
}是首项为
1
2
,公差为
3
4
的等差数列,于是可求得
an
2n
=
1
2
+(n-1)×
3
4
=
3
4
n
-
1
4
,而Cn=
an
2n-1
,于是可求Cn及an
解答: 证明:(1)由已知有a1+a2=4a1+2,解得a2=3a1+2=5,
故b1=a2-2a1=3,
又an+2=Sn+2-Sn+1=4an+1+2-(4an+2)=4an+1-4an
于是an+2-2an+1=2(an+1-2an),即bn+1=2bn
因此数列{bn}是首项为3,公比为2的等比数列.
(2)由(1)知等比数列{bn}中b1=3,公比q=2,
所以an+1-2an=3×2n-1,于是
an+1
2n+1
-
an
2n
=
3
4

因此数列{
an
2n
}是首项为
1
2
,公差为
3
4
的等差数列,
an
2n
=
1
2
+(n-1)×
3
4
=
3
4
n
-
1
4

∴Cn=
an
2n-1
=
2an
2n
=2(
3
4
n
-
1
4
)=
3
2
n-
1
2

∴an=(3n-1)•2n-2
点评:本题考查数列递推关系的应用与等比关系的确定,由bn=an+1-2an=3×2n-1,得到
an+1
2n+1
-
an
2n
=
3
4
是关键,考查转化思想与运算能力,属于中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

求函数y=log
1
2
1
x2-2x+5
的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

用长度为20m的篱笆围建一个一面靠墙的矩形鸡舍,且鸡舍内用相同的篱笆隔成三间(如图所示),如果挨着墙的边长为x,鸡舍面积为y
(1)请把y表示成x的函数;
(2)当x为何值时,函数取最大值,并求出最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知圆C:(x-1)2+(y-2)2=25,直线l:(2m+1)x+(m+1)y-7m-4=0,m∈R,当直线l被圆C截得的弦长最短时的m的值是(  )
A、-
3
4
B、-
1
3
C、-
4
3
D、
3
4

查看答案和解析>>

科目:高中数学 来源: 题型:

已知集合A={x|x2-2x-3=0},B={x|ax=1},若B⊆A,则a的取值集合为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,是一问题的程序框图,输出的结果是1716,则设定循环控制条件(整数)是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

设满足以下两个条件的有穷数列a1,a2,…,an为n(n=2,3,4,…)阶“期待数列”:
①a1+a2+…+an=0;②|a1|+|a2|+…+|an|=1.
(Ⅰ)分别写出一个单调递增的3阶和4阶“期待数列”;
(Ⅱ)若等比数列{an}为2014阶“期待数列”,求公比q的值;
(Ⅲ)若一个等差数列{an}既是2k(k∈N*)阶“期待数列”又是递增数列,求该数列的通项公式.

查看答案和解析>>

科目:高中数学 来源: 题型:

若ab>0,则下列四个等式:
①lg(ab)=lga+lgb
②lg(
a
b
)=lga-lgb
1
2
lg(
a
b
2=lg(
a
b

④lg(ab)=
1
logab10
中正确等式的符号是(  )
A、①②③④B、①②C、③④D、③

查看答案和解析>>

科目:高中数学 来源: 题型:

已知f(x)+2f(3-x)=x2,求f(x)的表达式.

查看答案和解析>>

同步练习册答案