精英家教网 > 高中数学 > 题目详情

【题目】某大型单位举行了一次全体员工都参加的考试,从中随机抽取了20人的分数.以下茎叶图记录了他们的考试分数(以十位数字为茎,个位数字为叶):

若分数不低于95分,则称该员工的成绩为优秀”.

1)从这20人中任取3人,求恰有1人成绩优秀的概率;

2)根据这20人的分数补全下方的频率分布表和频率分布直方图,并根据频率分布直方图解决下面的问题.

组别

分组

频数

频率

1

2

3

4

①估计所有员工的平均分数(同一组中的数据用该组区间的中点值作代表);

②若从所有员工中任选3人,记表示抽到的员工成绩为优秀的人数,求的分布列和数学期望.

【答案】1;(2)①82,②分布列见解析,

【解析】

1)从20人中任取3人共有种结果,恰有1人成绩优秀共有种结果,利用古典概型的概率计算公式计算即可;

2)①平均数的估计值为各小矩形的组中值与其面积乘积的和;②要注意服从的是二项分布,不是超几何分布,利用二项分布的分布列及期望公式求解即可.

1)设从20人中任取3人恰有1人成绩优秀为事件

,所以,恰有1优秀的概率为.

2

组别

分组

频数

频率

1

2

0.01

2

6

0.03

3

8

0.04

4

4

0.02

估计所有员工的平均分为82

的可能取值为0123,随机选取1人是优秀的概率为

的分布列为

0

1

2

3

,∴数学期望.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知的二项展开式的各二项式系数的和与各项系数的和均为

1)求展开式中有理项的个数;

2)求展开式中系数最大的项.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数

(Ⅰ)求f(x)的最小正周期和单调增区间;

(Ⅱ)当x[]时,求函数f(x)的最小值和最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】.已知函数.

(Ⅰ)求的单调区间;

(Ⅱ)已知函数的图象在公共点(x0y0)处有相同的切线,

(i)求证:处的导数等于0;

(ii)若关于x的不等式在区间上恒成立,求b的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某超市花费3万元购进一批同规格的月饼,进价为/.上架销售前发现有10盒包装损坏而不能出售,若能将余下的月饼按高出进价50/盒全部售出,则可最终获利8000.

1)超市共购进该规格的月饼多少盒?

2)现进行促销活动若顾客一次性购买总价不低于600元的月饼,可在总价的基础上优惠元但不得低于促销前总价的9折,求的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某同学大学毕业后,决定利用所学专业进行自主创业,经过市场调查,生产一小型电子产品需投入固定成本2万元,每生产万件,需另投入流动成本万元,当年产量小于万件时,(万元);当年产量不小于7万件时,(万元).已知每件产品售价为6元,假若该同学生产的商品当年能全部售完.

1)写出年利润(万年)关于年产量(万件)的函数解析式;(注:年利润=年销售收入-固定成本-流动成本)

2)当年产量约为多少万件时,该同学的这一产品所获年利润最大?最大年利润是多少?

(取.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】一个地区共有5个乡镇共30万人其人口比例为32523从这30万人中抽取一个300人的样本分析某种疾病的发病率.已知这种疾病与不同的地理位置及水土有关则应采取什么样的抽样方法?并写出具体过程.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在如图所示的几何体中,AB⊥平面ACDDE⊥平面ACD△ACD为等边三角形,ADDE2ABFCD的中点.

(1)求证:AF∥平面BCE

(2)求证:平面BCE⊥平面CDE.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】(本小题满分12分)为预防H1N1病毒爆发,某生物技术公司研制出一种新流感

疫苗,为测试该疫苗的有效性(若疫苗有效的概率小于90%,则认为测试没有通过),公司

选定2000个流感样本分成三组,测试结果如下表:

分组

A

B

C

疫苗有效

673

疫苗无效

77

90

已知在全体样本中随机抽取1个,抽到B组疫苗有效的概率是0.33

I)现用分层抽样的方法在全体样本中抽取360个测试结果,问应在C组抽取样本多少个?

II)已知,求通过测试的概率.

查看答案和解析>>

同步练习册答案