精英家教网 > 高中数学 > 题目详情
(2009•大连二模)已知椭圆的中心在坐标原点O,焦点在x轴上,斜率为-1且过椭圆右焦点F的直线交椭圆于A、B两点,且直线x-3y+4=0与向量
OA
+
OB
的平行.
(I)求椭圆的离心率;
(II)设M为椭圆上任意一点,点N(λ,μ),且满足
OM
=λ(
OA
+
OB
)+μ
AB
(λ,μ∈R)
,求N的轨迹方程.
分析:(Ⅰ)直线与椭圆方程联立用未达定理的A、B两点坐标的关系,据向量共线的条件得椭圆中a,b,c的关系,从而求得椭圆的离心率;
(Ⅱ)用向量运算将λ,μ用坐标表示,再用坐标的关系求出λ22的值,即得N的轨迹方程.
解答:解:(I)设椭圆方程为
x2
a2
+
y2
b2
=1
(a>b>0),F(c,0)
则直线AB的方程为y=-x+c,代入
x2
a2
+
y2
b2
=1

化简得(a2+b2)x2-2a2cx+a2c2-a2b2=0.
令A(x1,y1),B(x2,y2),
则x1+x2=
2a2c
a2+b2
,x1x2=
a2c2-a2b2
a2+b2

OA
+
OB
=(x1+x2,y1+y2),且直线x-3y+4=0的方向向量
a
=(3,1),
OA
+
OB
a
共线,
∴3(y1+y2)-(x1+x2)=0,又y1=-x1+c,y2=-x2+c,
∴3(-x1-x2+2c)-(x1+x2)=0,
∴x1+x2=
3
2
c.
2a2c
a2+b2
=
3
2
c,
所以a2=3b2
∴c=
6
a
3

故离心率e=
c
a
=
6
3

(II)由(I)知a2=3b2
所以椭圆可化为x2+3y2=3b2,F(c,0),
设M(x,y),
由已知
OM
=λ(
OA
+
OB
)+μ
AB
(λ,μ∈R)

x=(λ-μ)x1+(λ+μ)x2
y=(λ-μ)y1+(λ+μ)y2

∵M(x,y)在椭圆上,即(λ-μ)2(x12+3y12)+2(λ22)(x1x2+3y1y2)+(λ+μ)2(x22+3y22)=3b2.①
由(I)知a2=
3
2
c2,b2=
1
2
c2
∴x1+x2=
3c
2
,x1x2=
a2c2-a2b2
a2+b2
=
3
8
c2
∴x1x2+3y1y2=x1x2+3(-x1+c)(-x2+c)=4x1x2-3(x1+x2)c+3c2=
3
2
c2-
9
2
c2+3c2=0.
又x12+3y12=3b2,x22+3y22=3b2
代入①得λ22=
1
2

故N的轨迹方程为λ22=
1
2
点评:考查向量共线为圆锥曲线提供已知条件;处理直线与圆锥曲线位置关系常用的方法是直线与圆锥曲线方程联立用韦达定理.是高考常见题型且是解答题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(2009•大连二模)已知复数z=(1+i)2+i2009,则复数z的虚部是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2009•大连二模)α、β为两个互相平行的平面,a、b为两条不重合的直线,下列条件:
①a∥α,b?β;
②a⊥α,b∥β
③a⊥α,b⊥β
④a∥α,b∥β.
其中是a∥b的充分条件的为(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2009•大连二模)已知x0为函数f(x)=(
1
5
x-log2x的零点,若0<x1<x0,则f(x1)的值为(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2009•大连二模)如图所示,若向圆x2+y2=2内随机投一点(该点落在圆x2+y2=2内任何一点是等可能的),则所投的点落在圆与y轴及曲线y=x2(x≥0)围成的阴影图形S内部的概率是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2009•大连二模)(
1
2
x+
1
2
8=a0+a 1x+a2x2+…a7x7+a8x8,其中ak(k=0,1,2,…,7,8)都是常数,则a1+2a2+3a3+…+7a7+8a8的值为(  )

查看答案和解析>>

同步练习册答案