A. | (0,$\sqrt{2}$-1) | B. | ($\frac{\sqrt{2}}{2}$,1) | C. | (0,$\frac{\sqrt{2}}{2}$) | D. | ($\sqrt{2}$-1,1) |
分析 在△MF1F2中,运用正弦定理,结合条件可得$\frac{c}{a}$=$\frac{|M{F}_{1}|}{|M{F}_{2}|}$=$\frac{2a-|M{F}_{2}|}{|M{F}_{2}|}$,由a-c<|MF2|<a+c,运用离心率公式和不等式的解法,即可得到所求范围.
解答 解:在△MF1F2中,由正弦定理可得,
$\frac{|M{F}_{1}|}{sin∠M{F}_{2}{F}_{1}}$=$\frac{|M{F}_{2}|}{sin∠M{F}_{1}{F}_{2}}$,
又$\frac{a}{sin∠M{F}_{1}{F}_{2}}$=$\frac{c}{sin∠M{F}_{2}{F}_{1}}$,
即有$\frac{c}{a}$=$\frac{|M{F}_{1}|}{|M{F}_{2}|}$=$\frac{2a-|M{F}_{2}|}{|M{F}_{2}|}$,
解得|MF2|=$\frac{2{a}^{2}}{a+c}$,
由于a-c<|MF2|<a+c,
即有(a-c)(a+c)<2a2<(a+c)2,
即为a2-c2<2a2,显然成立;
又$\sqrt{2}$a<a+c,即有c>($\sqrt{2}$-1)a,
则离心率e=$\frac{c}{a}$∈($\sqrt{2}$-1,1).
故选:D.
点评 本题考查椭圆的定义、方程和性质,主要考查椭圆的离心率的求法,同时考查三角形的正弦定理,以及运算能能力,属于中档题.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | $\frac{{\sqrt{3}}}{2}$ | B. | $\begin{array}{l}-{\frac{{\sqrt{3}}}{2}}\end{array}$ | C. | $-\frac{{\sqrt{3}}}{3}$ | D. | $\frac{{\sqrt{3}}}{3}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | y与x的相关系数为2 | |
B. | y与x的关系是函数关系 | |
C. | 废品率每增加1%,生铁成本每吨大约增加2元 | |
D. | 废品率每增加1%,生铁成本大约增加258元 |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com