精英家教网 > 高中数学 > 题目详情
8.已知椭圆$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)的左、右焦点分别为F1,F2,且|F1F2|=2c,若椭圆上存在点M使得$\frac{a}{sin∠M{F}_{1}{F}_{2}}$=$\frac{c}{sin∠M{F}_{2}{F}_{1}}$,则该椭圆离心率的取值范围为(  )
A.(0,$\sqrt{2}$-1)B.($\frac{\sqrt{2}}{2}$,1)C.(0,$\frac{\sqrt{2}}{2}$)D.($\sqrt{2}$-1,1)

分析 在△MF1F2中,运用正弦定理,结合条件可得$\frac{c}{a}$=$\frac{|M{F}_{1}|}{|M{F}_{2}|}$=$\frac{2a-|M{F}_{2}|}{|M{F}_{2}|}$,由a-c<|MF2|<a+c,运用离心率公式和不等式的解法,即可得到所求范围.

解答 解:在△MF1F2中,由正弦定理可得,
$\frac{|M{F}_{1}|}{sin∠M{F}_{2}{F}_{1}}$=$\frac{|M{F}_{2}|}{sin∠M{F}_{1}{F}_{2}}$,
又$\frac{a}{sin∠M{F}_{1}{F}_{2}}$=$\frac{c}{sin∠M{F}_{2}{F}_{1}}$,
即有$\frac{c}{a}$=$\frac{|M{F}_{1}|}{|M{F}_{2}|}$=$\frac{2a-|M{F}_{2}|}{|M{F}_{2}|}$,
解得|MF2|=$\frac{2{a}^{2}}{a+c}$,
由于a-c<|MF2|<a+c,
即有(a-c)(a+c)<2a2<(a+c)2
即为a2-c2<2a2,显然成立;
又$\sqrt{2}$a<a+c,即有c>($\sqrt{2}$-1)a,
则离心率e=$\frac{c}{a}$∈($\sqrt{2}$-1,1).
故选:D.

点评 本题考查椭圆的定义、方程和性质,主要考查椭圆的离心率的求法,同时考查三角形的正弦定理,以及运算能能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

18.已知抛物线y2=4x的焦点为F,准线与x轴的交点为P,过P任作一条直线与抛物线交于A、B两点,O为坐标原点.
(1)求$\overrightarrow{OA}$•$\overrightarrow{OB}$的值
(2)设C为抛物线上位于第一象限的任意一点,过C作直线l与抛物线相切,求证:F关于直线l的对称点在抛物线的准线上.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.已知关于x的方程ex=ax+b(a>0,b∈R)有相等根,则a+b的最大值为e.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.在锐角△ABC中,已知内角A、B、C所对的边分别为a,b,c,向量$\overrightarrow{m}$=(2sin(A+C),$\sqrt{3}$),$\overrightarrow{n}$=(cos2B,2cos$\frac{B}{2}$-1),且向量$\overrightarrow{m}$∥$\overrightarrow{n}$.
(1)求角B的大小;
(2)如果b=1,求△ABC的面积S△ABC的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.不等式|x-1|>2的解为{x|x>3或x<-1}.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.已知角α的终边在射线y=-$\sqrt{3}x({x<0})$上,那么sinα等于(  )
A.$\frac{{\sqrt{3}}}{2}$B.$\begin{array}{l}-{\frac{{\sqrt{3}}}{2}}\end{array}$C.$-\frac{{\sqrt{3}}}{3}$D.$\frac{{\sqrt{3}}}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.已知集合M={1,3,5,7,9},N={x|2x<9},则M∩N=(  )
A.{1,3,5}B.{1,3}C.{1}D.{3}

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.废品率x%和每吨生铁成本y(元)之间的回归直线方程为$\stackrel{∧}{y}$=2x+256,这表明(  )
A.y与x的相关系数为2
B.y与x的关系是函数关系
C.废品率每增加1%,生铁成本每吨大约增加2元
D.废品率每增加1%,生铁成本大约增加258元

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.已知圆C:x2+y2+bx+ay-3=0(a>0,b>0)上任意一点关于直线l:x+y+2=0的对称点都在圆C上,则$\frac{2}{a}+\frac{1}{b}$的最小值为$\frac{3}{4}$+$\frac{\sqrt{2}}{2}$.

查看答案和解析>>

同步练习册答案