精英家教网 > 高中数学 > 题目详情

【题目】由小到大排列的一组数据x1 , x2 , x3 , x4 , x5 , 其中每个数据都小于﹣1,则样本1,x1 , ﹣x2 , x3 , ﹣x4 , x5的中位数为( )
A.
B.
C.
D.

【答案】C
【解析】解:因为x1<x2<x3<x4<x5<﹣1,题目中数据共有六个,排序后为x1<x3<x5<1﹣x4<﹣x2
故中位数是按从小到大排列后第三,第四两个数的平均数作为中位数,
故这组数据的中位数是 (x5+1).
故选:C.
【考点精析】掌握平均数、中位数、众数是解答本题的根本,需要知道⑴平均数、众数和中位数都是描述一组数据集中趋势的量;⑵平均数、众数和中位数都有单位;⑶平均数反映一组数据的平均水平,与这组数据中的每个数都有关系,所以最为重要,应用最广;⑷中位数不受个别偏大或偏小数据的影响;⑸众数与各组数据出现的频数有关,不受个别数据的影响,有时是我们最为关心的数据.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】甲、乙两位同学在5次考试中的数学成绩用茎叶图表示如图,中间一列的数字表示数学成绩的十位数字,两边的数字表示数学成绩的个位数字,若甲、乙两人的平均成绩分别是 ,则下列说法正确的是(
A. ,甲比乙成绩稳定
B. ,乙比甲成绩稳定
C. ,甲比乙成绩稳定
D. ,乙比甲成绩稳定

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知圆心为C的圆经过O(0,0))和A(4,0)两点,线段OA的垂直平分线和圆C交于M,N两点,且|MN|=2
(1)求圆C的方程
(2)设点P在圆C上,试问使△POA的面积等于2的点P共有几个?证明你的结论.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数,其中为自然对数的底数.

(1)当时,求函数的极值;

(2)当时,讨论函数的定义域内的零点个数.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,四棱锥P-ABCD中,底面ABCD是矩形,PAABCD,且AB=2,AD=4,

AP=4,F是线段BC的中点.

⑴ 求证:面PAFPDF

⑵ 若E是线段AB的中点在线段AP上是否存在一点G,使得EGPDF若存在,求出线段AG的长度;若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在棱长为2的正方体ABCD﹣A1B1C1D1中,E,F分别为AD,A1B1的中点.
(1)求证:DB1⊥CD1
(2)求三棱锥B﹣EFC的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】定义在[0,1]上的函数f(x)满足:①f(0)=0;②f(x)+f(1﹣x)=1;③f( )= f(x);④当0≤x1<x2≤1时,f(x1)≤f(x2).则f( )=

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,已知⊙O中,直径AB垂直于弦CD,垂足为MPCD延长线上一点,PE切⊙O于点E,连接BECD于点F,证明:

(1)∠BFM=∠PEF

(2)PF2PD·PC.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某单位N名员工参加“社区低碳你我他”活动,他们的年龄在25岁至50岁之间,按年龄分组:第1组,第2组,第3组,第4组,第5组,得到的频率分布图如图所示,下表是年龄的频率分布表.

(1)现要从年龄较小的第组中用分层抽样的方法抽取6人,则年龄第组人数分别是多少?

(2)在(1)的条件下,从这6中随机抽取2参加社区宣传交流活动,X表示第3组中抽取的人数,求X的分布列和期望值

查看答案和解析>>

同步练习册答案