精英家教网 > 高中数学 > 题目详情

(本题满分12分)已知数列满足.
(Ⅰ)证明数列是等差数列;
(Ⅱ)求数列的通项公式;
(Ⅲ)设,求数列的前项和.

解析试题分析:
解:(Ⅰ)由已知可得,所以,即
∴数列是公差为1的等差数列.         4分
(Ⅱ)由(Ⅰ)可得,∴. .       7分
(Ⅲ)由(Ⅱ)知,
所以

相减得 
. .   .    .     .          12分
考点:本题考查等差数列与等比数列的概念与通项公式、数列求和等基础知识知识,考查运算求解能力、推理论证能力,中等题.
点评:

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

已知数列的前项和为,满足
(1)令,证明:
(2)求数列的通项公式。

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

杨辉是中国南宋末年的一位杰出的数学家、数学教育家、杨辉三角是杨辉的一大重要研究成果,它的许多性质与组合数的性质有关,杨辉三角中蕴藏了许多优美的规律。下图是一个11阶杨辉三角:
(1)求第20行中从左到右的第4个数;
(2)若第n行中从左到右第14个数与第15个数的比为,求n的值;
(3)求n阶(包括0阶)杨辉三角的所有数的和;
(4)在第3斜列中,前5个数依次为1,3,6,10,15;第4斜列中,第5个数为35。显然,1+3+6+10+15=35。事实上,一般地有这样的结论:第m斜列中(从右上到左下)前k个数之和,一定等于第m+1斜列中第k个数。试用含有m、k的数学公式表示上述结论,并给予证明。

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

在数列{an}(n∈N*)中,已知a1=1,a2k=-aka2k-1=(-1)k+1akk∈N*. 记数列{an}的前n项和为Sn.
(1)求S5S7的值;
(2)求证:对任意n∈N*,Sn≥0.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

数列的前项和记为
(Ⅰ)求的通项公式;
(Ⅱ)等差数列的各项为正,其前项和为,且,又成等比数列,求

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本小题满分12分)
已知数列的前项和为,满足.
(1)求证:数列为等比数列;
(2)若数列满足为数列的前项和,求证:.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本题满分12分)
已知数列的前 n项和为,满足,且.
(Ⅰ)求
(Ⅱ)若,求证:数列是等比数列。
(Ⅲ)若 , 求数列的前n项和

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本小题满分12分)已知数列中,,数列满足
(1)求证:数列是等差数列;
(2)求数列中的最大项和最小项,并说明理由。

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本小题满分l0分) 在等比数列中,已知.
求数列的通项公式;
设数列的前n项和为,求

查看答案和解析>>

同步练习册答案