精英家教网 > 高中数学 > 题目详情
如图,在四棱锥P-ABCD中,PD⊥平面ABCD,底面ABCD是菱形,∠BAD=60°,AB=2,PD=
6
,O为AC与BD的交点,E为棱PB上一点.
(Ⅰ)证明:平面EAC⊥平面PBD;
(Ⅱ)若PD∥平面EAC,求三棱锥P-EAD的体积.
考点:棱柱、棱锥、棱台的体积,平面与平面垂直的判定
专题:空间位置关系与距离
分析:(Ⅰ)由已知得AC⊥PD,AC⊥BD,由此能证明平面EAC⊥平面PBD.
(Ⅱ)由已知得PD∥OE,取AD中点H,连结BH,由此利用VP-EAD=VE-PAD=
1
2
VB-PAD
,能求出三棱锥P-EAD的体积.
解答: (Ⅰ)证明:∵PD⊥平面ABCD,AC?平面ABCD,
∴AC⊥PD.∵四边形ABCD是菱形,∴AC⊥BD,
又∵PD∩BD=D,AC⊥平面PBD.
而AC?平面EAC,∴平面EAC⊥平面PBD.

(Ⅱ)解:∵PD∥平面EAC,平面EAC∩平面PBD=OE,
∴PD∥OE,
∵O是BD中点,∴E是PB中点.
取AD中点H,连结BH,∵四边形ABCD是菱形,∠BAD=60°,
∴BH⊥AD,又BH⊥PD,AD∩PD=D,∴BD⊥平面PAD,BH=
3
2
AB=
3

VP-EAD=VE-PAD=
1
2
VB-PAD

=
1
2
×
1
3
×S△PAD×BH
=
1
6
×
1
2
×2×
6
×
3
=
2
2
点评:本题考查平面与平面垂直的证明,考查三棱锥的体积的求法,解题时要认真审题,注意空间思维能力的培养.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

下列函数经过原点的是(  )
A、y=2x-1
B、y=x-1
C、y=log2x
D、y=-x2+1

查看答案和解析>>

科目:高中数学 来源: 题型:

P(2,-3)在曲线x2-ay2=1上,则a的值为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=lnx+
1
x
+ax,x∈(0,+∞)(a为实常数).若f(x)在[2,+∞)上是单调函数,则a的取值范围是(  )
A、(-∞,-
1
4
]
B、(-∞,-
1
4
]∪[0,+∞)
C、(-∞,0)∪[
1
4
,+∞]
D、(-∞,0)∪(
1
2
,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:

正方形ABCD的边长为2,点E、F分别在边AB、BC上,且AE=1,BF=
1
2
,将此正方形沿DE、DF折起,使点A、C重合于点P,则三棱锥P-DEF的体积是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

正方体的四个顶点构成的几何体的三视图如图,若各视图均为边长为2的正方形,则这个几何体的体积是(  )
A、
4
3
B、
8
3
C、
16
3
D、
20
3

查看答案和解析>>

科目:高中数学 来源: 题型:

若θ∈[-
3
π
6
],试确定cosθ的范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

y=2x2-1在[1,3]上的最小值是
 
,最大值为
 
,值域为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

某地绿化治理沙漠需要大量用水,第1年的用水量约为100(百吨),第2年的用水量约为120(百吨).该地政府综合各种因素预测:①每年的用水量会逐年增加;②每年的用水量都不能达到130(百吨).某校数学兴趣小组想找一个函数y=f(x)来拟合该项目第x(x≥1)年与当年的用水量y(单位:百吨)之间的关系,则函数y=f(x)必须符合预测①:f(x)在[1,+∞)上单调递增;预测②:f(x)<130对x∈[1,+∞)恒成立.
(1)若f(x)=
m
x
+n,试确定m,n的值,并考察该函数是否符合上述两点预测;
(2)若f(x)=a•bx+c(b>0,b≠1),欲使得该函数符合上述两点预测,试确定b的取值范围.

查看答案和解析>>

同步练习册答案