精英家教网 > 高中数学 > 题目详情
在边长为2的正方体ABCD-A′B′C′D′中,E是BC的中点,F是DD′的中点
(1)求证:CF平面A′DE
(2)求二面角E-A′D-A的平面角的余弦值.
证明(1):分别以DA,DC,DD'为x轴,y轴,z轴
建立空间直角坐标系,
则A'(2,0,2),E(1,2,0),
D(0,0,0),C(0,2,0),F(0,0,1),…(2分)
DA′
=(2,0,2),
DE
=(1,2,0)

设平面A'DE的法向量是
n
=(a,b,c)

n
DA′
=2a+2c=0
n
DE
=a+2b=0
,取
n
=(-2,1,2)
,…(4分)
CF
=(0,-2,1)
,∵
CF
n
=-2+2=0
,∴
CF
n

所以,CF平面A'DE.…(6分)
(2)由正方体的几何特征可得
DC
=(0,2,0)
是面AA'D的法向量
又由(1)中向量
n
=(-2,1,2)
为平面A'DE的法向量
故二面角E-A'D-A的平面角θ满足;
cosθ=
DC
n
|
DC
||
n
|
=
1
3

即二面角E-A'D-A的平面角的余弦值为
1
3
…(8分)
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

四棱锥P-ABCD中,底面ABCD是边长为2的菱形,侧面PAD⊥底面ABCD,∠BCD=60°,PA=PD=
2
,E是BC中点,点Q在侧棱PC上.
(Ⅰ)求证:AD⊥PB;
(Ⅱ)若Q是PC中点,求二面角E-DQ-C的余弦值;
(Ⅲ)若
PQ
PC
,当PA平面DEQ时,求λ的值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,直三棱柱ABC-A1B1C1中,AB=BC,∠ABC=120°,Q是AC上的点,AB1平面BC1Q.
(Ⅰ)确定点Q在AC上的位置;
(Ⅱ)若QC1与平面BB1C1C所成角的正弦值为
2
4
,求二面角Q-BC1-C的余弦值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

如图,正方体ABCD-A1B1C1D1的棱长为2,P是底面A1B1C1D1的中心,M是CD的中点,则P到平面AMD1的距离为______.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知如图,平面ABD⊥平面BCD,∠BAD=∠BCD=90°,∠ABD=45°,∠CBD=30°.
(Ⅰ)异面直线AB、CD所成的角为α,异面直线AC、BD所成的角为β,求证:α=β;
(Ⅱ)求二面角B-AC-D的余弦值的绝对值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,在直三棱柱ABC-A1B1C1中,AB=BC=2AA1,∠ABC=90°,D是BC的中点.
(Ⅰ)求证:A1B平面ADC1
(Ⅱ)求二面角C1-AD-C的余弦值;
(Ⅲ)试问线段A1B1上是否存在点E,使AE与DC1成60°角?若存在,确定E点位置,若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

[2014·龙岩质检]已知向量a=(1,-1),b=(1,2),向量c满足(c+b)⊥a,(c-a)∥b,则c=(  )
A.(2,1)B.(1,0)C.()D.(0,-1)

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

已知a,b是两个非零向量,下列各命题中真命题的个数为(  )
(1)2a的方向与a的方向相同,且2a的模是a的模的2倍;
(2)-2a的方向与5a的方向相反,且-2a的模是5a的模的;
(3)-2a与2a是一对相反向量;
(4)a-b与-(b-a)是一对相反向量.
A.1
B.2
C.3
D.4

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

已知向量的夹角为1200,则(   ).
A.B.C.4D.

查看答案和解析>>

同步练习册答案