精英家教网 > 高中数学 > 题目详情

【题目】某企业准备投入适当的广告费对产品进行促销,在一年内预计销售Q(万件)与广告费x(万元)之间的函数关系为Q= (x≥0).已知生产此产品的年固定投入为3万元,每生产1万元此产品仍需再投入32万元,若每件销售价为“平均每件生产成本的150%”与“年平均每件所占广告费的50%”之和.
(1)试将年利润W(万元)表示为年广告费x(万元)的函数;
(2)当年广告费投入多少万元时,企业年利润最大?最大利润为多少?

【答案】
(1)解:由题意可得,产品的生产成本为(32Q+3)万元,

每万件销售价为

∴年销售收入为 =

∴年利润 =


(2)解:令x+1=t(t≥1),则

∵t≥1,∴ ,即W≤42,

当且仅当 ,即t=8时,W有最大值42,此时x=7.

即当年广告费为7万元时,企业利润最大,最大值为42万元.


【解析】(1)根据生产此产品的年固定投入为3万元,每生产1万件此产品仍需后期再投入32万元,若每件售价为“年平均每件投入的150%”与“年平均每件所占广告费的50%”之和,可建立函数关系式;(2)利用换元法,再借助于基本不等式,即可求得最值.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】函数f(x)=lg(2sinx﹣1)的定义域为

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】一个三棱锥的三视图如下图所示,则该几何体的体积为

A. B. C. D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知关于x的不等式kx2﹣2x+3k<0.
(1)若不等式的解集为{x|x<﹣3或x>﹣1},求k的值;
(2)若不等式的解集为,求实数k的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】一条光线从点(﹣2,﹣3)射出,经y轴反射后与圆(x+3)2+(y﹣2)2=1相切,则反射光线所在直线的斜率为(
A.﹣ 或﹣
B.﹣ 或﹣
C.﹣ 或﹣
D.﹣ 或﹣

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设点的坐标分别为,直线相交于点,且它们的斜率之积是.

(1)求点的轨迹的方程;

(2)直线与曲线相交于两点,若是否存在实数,使得的面积为?若存在,请求出的值;若不存在,请说明理由。

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设集合A={x|x2+4x=0,x∈R},B={x|x2+2(a+1)x+a2﹣1=0,x∈R},
(1)若A∩B=A∪B,求实数a的值;
(2)若A∩B=B,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知过点A(0,1)且斜率为k的直线l与圆C:(x﹣2)2+(y﹣3)2=1交于点M、N两点.
(1)求k的取值范围;
(2)若 =12,其中O为坐标原点,求|MN|.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某单位为绿化环境,移栽了甲、乙两种大树各2株.设甲、乙两种大树移栽的成活率分别为,且各株大树是否成活互不影响.求移栽的4株大树中:

1)两种大树各成活1株的概率;

2)成活的株数的分布列与期望.

查看答案和解析>>

同步练习册答案