【题目】某企业准备投入适当的广告费对产品进行促销,在一年内预计销售Q(万件)与广告费x(万元)之间的函数关系为Q= (x≥0).已知生产此产品的年固定投入为3万元,每生产1万元此产品仍需再投入32万元,若每件销售价为“平均每件生产成本的150%”与“年平均每件所占广告费的50%”之和.
(1)试将年利润W(万元)表示为年广告费x(万元)的函数;
(2)当年广告费投入多少万元时,企业年利润最大?最大利润为多少?
科目:高中数学 来源: 题型:
【题目】已知关于x的不等式kx2﹣2x+3k<0.
(1)若不等式的解集为{x|x<﹣3或x>﹣1},求k的值;
(2)若不等式的解集为,求实数k的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】一条光线从点(﹣2,﹣3)射出,经y轴反射后与圆(x+3)2+(y﹣2)2=1相切,则反射光线所在直线的斜率为( )
A.﹣ 或﹣
B.﹣ 或﹣
C.﹣ 或﹣
D.﹣ 或﹣
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】设点的坐标分别为,直线相交于点,且它们的斜率之积是.
(1)求点的轨迹的方程;
(2)直线与曲线相交于两点,若是否存在实数,使得的面积为?若存在,请求出的值;若不存在,请说明理由。
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】设集合A={x|x2+4x=0,x∈R},B={x|x2+2(a+1)x+a2﹣1=0,x∈R},
(1)若A∩B=A∪B,求实数a的值;
(2)若A∩B=B,求实数a的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知过点A(0,1)且斜率为k的直线l与圆C:(x﹣2)2+(y﹣3)2=1交于点M、N两点.
(1)求k的取值范围;
(2)若 =12,其中O为坐标原点,求|MN|.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某单位为绿化环境,移栽了甲、乙两种大树各2株.设甲、乙两种大树移栽的成活率分别为和,且各株大树是否成活互不影响.求移栽的4株大树中:
(1)两种大树各成活1株的概率;
(2)成活的株数的分布列与期望.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com