精英家教网 > 高中数学 > 题目详情

【题目】某校为了了解高一新生是否愿意参加军训,随机调查了80名新生,得到如下2×2列联表

愿意

不愿意

合计

x

5

M

y

z

40

合计

N

25

80

1)写出表中xyzMN的值,并判断是否有99.9%的把握认为愿意参加军训与性别有关;

2)在被调查的不愿意参加军训的学生中,随机抽出3人,记这3人中男生的人数为ξ,求ξ的分布列和数学期望.

参考公式:

附:

PK2k0

0.50

0.40

0.25

0.15

0.10

0.05

0.025

0.01

0.005

0.001

k0

0.455

0.708

1.323

2.072

2.706

3.841

5.024

6.635

7.879

10.828

【答案】(1)M40x35z20y20N55,有99.9%的把握认为愿意参加志愿者填报培训与性别有关.(2)分布列见详解,E(ξ.

【解析】

1)根据表格中数据,即可求得xyzMN的值,再计算,结合参考表格即可作出判断;

2)列出ξ的取值,根据古典概型概率计算公式求得分布列,再根据分布列计算数学期望即可.

1)由表格数据可知:

M804040

x40535

z25520

y402020

N802555

K213.0910.828

∴有99.9%的把握认为愿意参加志愿者填报培训与性别有关.

2)在被调查的不愿意参加军训的学生中,随机抽出3人,

记这3人中男生的人数为ξ,则ξ的可能取值为0,1,2,3

Pξ0

Pξ1

Pξ2

Pξ3

ξ的分布列为:

ξ

0

1

2

3

P

Eξ

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】在平面直角坐标系中已知椭圆过点,其左、右焦点分别为,离心率为.

1)求椭圆E的方程;

2)若AB分别为椭圆E的左、右顶点,动点M满足,且MA交椭圆E于点P.

i)求证:为定值;

ii)设PB与以PM为直径的圆的另一交点为Q,问:直线MQ是否过定点,并说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知.

1)若恒成立,求实数a的取值范围;

2)若关于x的方程有两个不同的解,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】对于函数fx)给出定义:设fx)是函数yfx)的导数,fx)是函数fx)的导数,若方程fx)=0有实数解x0,则称点(x0fx0))为函数yfx)的拐点.某同学经过探究发现:任何一个三次函数fx)=ax3+bx2+cx+da≠0)都有拐点;任何一个三次函数都有对称中心,且拐点就是对称中心.给定函数,请你根据上面探究结果,计算f+f+f+……+f)=_____

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数,若方程有五个不同的根,则实数的取值范围为( )

A. B. C. D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在长方体中,底面是边长为的正方形,的中点,的中点.

1)求证:平面

2)若,求平面与平面所成二面角的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数fxgx1

1)若fa)=2,求实数a的值;

2)判断fx)的单调性,并证明;

3)设函数hx)=gxx0),若h2t+mht+40对任意的正实数t恒成立,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在四棱锥PABCD中,底面ABCD是边长为4的正方形,△PAD是一个正三角形,若平面PAD⊥平面ABCD,则该四棱锥的外接球的表面积为_____.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在直角坐标系中,曲线的参数方程为(为参数).为极点,轴的正半轴为极轴建立极坐标系,直线的极坐标方程为(),将曲线向左平移2个单位长度得到曲线.

1)求曲线的普通方程和极坐标方程;

2)设直线与曲线交于两点,求的取值范围.

查看答案和解析>>

同步练习册答案