精英家教网 > 高中数学 > 题目详情
19.已知函数f(x)=$\frac{a{x}^{2}+1}{x+b}$是奇函数,且方程f(x)=x有等根.
(1)求a,b的值;
(2)判断函数y=f(f(x))的奇偶性,并给出证明.

分析 (1)根据函数的奇偶性和方程f(x)=1有相等根,建立方程关系即可求a,b的值;
(2)根据函数奇偶性的定义即可判断函数y=f(f(x))的奇偶性.

解答 解:(1)∵函数f(x)是奇函数,
∴f(-x)=-f(x),
即$\frac{a{x}^{2}+1}{-x+b}$=-$\frac{a{x}^{2}+1}{x+b}$,
即-x+b=-x-b,
则b=-b,得b=0,
此时f(x)=$\frac{a{x}^{2}+1}{x}$,由f(x)=$\frac{a{x}^{2}+1}{x}$=1得ax2+1=x,即ax2-x+1=0有等根,
则a≠0且判别式△=0,即1-4a=0,得a=$\frac{1}{4}$;
综上,a=$\frac{1}{4}$,b=0;
(2)∵a=$\frac{1}{4}$,b=0;
∴f(x)=$\frac{\frac{1}{4}{x}^{2}+1}{x}$,
函数的定义域为(-∞,0)∪(0,+∞),则f(-x)=-f(x),
∴设g(x)=f(f(x)),
则g(-x)=f(f(-x))=f(-f(x))=-f(f(x))=-g(x),
则函数y=f(f(x))是奇函数.

点评 本题主要考查函数奇偶性的判断和应用,根据函数奇偶性的定义是解决本题的关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

9.设函数f(x)=2lnx-$\frac{a}{2}$x2+(2a-1)x(a>0).若?x>0,使得不等式f(x)>3a-2成立,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.在△ABC中,两边之长a+b=8,∠C=60°,则△ABC的面积的最大值是4$\sqrt{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.下列几种推理中是演绎推理的序号为(  )
A.由20<22,21<32,22<42…猜想2n-1<(n+1)2(n∈N+
B.半径为r的圆的面积s=πr2,单位圆的面积s=π
C.猜想数列$\frac{1}{1×2}$、$\frac{1}{2×3}$、$\frac{1}{3×4}$…的通项为an=$\frac{1}{n(n+1)}$(n∈N+
D.由平面直角坐标系中,圆的方程为(x-a)2+(y-b)2=r2推测空间直角坐标系中球的方程为(x-a)2+(y-b)2+(z-c)2=r2

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.已知函数f(x)=asinωx+bcosωx,其中ab≠0.
(1)已知ω=2,且函数y=f(x)的图象经过点($\frac{π}{4}$,2)和点($\frac{π}{2}$,-2).
①求y=f(x)的解析式;
②将函数y=f(x)的图象上各点的横坐标保持不变,纵坐标缩短为原来的$\frac{\sqrt{2}}{2}$倍,再把所得图象向右平移$\frac{π}{4}$个单位,得到函数y=g(x)的图象,若方程g(|x|)=m在区间[-$\frac{π}{2}$,$\frac{π}{2}$]上有且只有2个不同的实根,求实数m的取值范围.
(2)已知ω=1,且函数y=f(x)在x=x0处取最大值,当实数a,b满足(a-$\sqrt{3}$)2+(b-1)2=1时,求tan($\frac{π}{4}$-x0)的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.关于x的不等式loga(2-$\frac{1}{2}$x2)>loga(a-x)的解集为A,若A∩Z={1},求实数a的范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.已知数列{an}的前n项和为Sn和为Sn,S1=-$\frac{1}{4}$,an-4SnSn-1=0(n≥2)
(1)若bn=$\frac{1}{{S}_{n}}$,证明{bn}是等差数列;
(2)求数列{an}的通项公式.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.函数f(x)的定义域为R,且满足f(x)是偶函数,f(1-x)=f(1+x),若f(0.5)=9,则f(8.5)等于(  )
A.-9B.9C.-3D.0

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.将向量$\overrightarrow{a}$=(-3,-1)平行移动,得到向量$\overrightarrow{PQ}$,点P,Q均在抛物线y=x2上,求点Q的坐标.

查看答案和解析>>

同步练习册答案