精英家教网 > 高中数学 > 题目详情

【题目】如图,AB、CD是圆的两条平行弦,BE∥AC,BE交CD于E、交圆于F,过A点的切线交DC的延长线于P,PC=ED=1,PA=2.

(1)求AC的长;
(2)试比较BE与EF的长度关系.

【答案】
(1)解:∵过A点的切线交DC的延长线于P,

∴PA2=PCPD,

∵PC=1,PA=2,

∴PD=4

又PC=ED=1,∴CE=2,

∵∠PAC=∠CBA,∠PCA=∠CAB,

∴△PAC∽△CBA,

∴AC2=PCAB=2,

∴AC=


(2)解:

由相交弦定理可得CEED=BEEF.

∵CE=2,ED=1,

∴EF=

∴EF=BE.)


【解析】(1)先求出CE,再证明△PAC∽△CBA,利用相似比,即可求AC的长;(2)由相交弦定理可得CEED=BEEF,求出EF,即可得出结论.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知平行四边形ABCD中,∠A=45°,且AB=BD=1,将△ABD沿BD折起,使得平面ABD⊥平面BCD,如图所示:

(1)求证:AB⊥CD;
(2)若M为AD的中点,求二面角A﹣BM﹣C的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在△ABC中,a,b,c分别为内角A,B,C的对边,且asin B=-bsin.

(1)求A;

(2)若△ABC的面积S=c2,求sin C的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知CD是等边三角形ABC的AB边上的高,E,F分别是AC和BC边的中点,现将ABC沿CD翻折成直二面角A-DC-B.

(1)求直线BC与平面DEF所成角的余弦值;

(2)在线段BC上是否存在一点P,使APDE?证明你的结论.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=xlnx,g(x)=﹣x2+ax﹣3.
(1)求f(x)在[t,t+2](t>0)上的最小值;
(2)若存在x 使不等式2f(x)≥g(x)成立,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,一个几何体三视图的正视图和侧视图为边长为2锐角60°的菱形,俯视图为正方形,则此几何体的内切球表面积为(

A.8π
B.4π
C.3π
D.2π

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】空气质量指数PM2.5(单位:μg/m3)表示每立方米空气中可入肺颗粒物的含量,这个值越高,就代表空气污染越严重:

PM2.5
日均浓度

0~35

35~75

75~115

115~150

150~250

>250

空气质量级别

一级

二级

三级

四级

五级

六级

空气质量类型

轻度污染

中度污染

重度污染

严重污染

甲、乙两城市2013年2月份中的15天对空气质量指数PM2.5进行监测,获得PM2.5日均浓度指数数据如茎叶图所示:

(1)根据你所学的统计知识估计甲、乙两城市15天内哪个城市空气质量总体较好?(注:不需说明理由)
(2)在15天内任取1天,估计甲、乙两城市空气质量类别均为优或良的概率;
(3)在乙城市15个监测数据中任取2个,设X为空气质量类别为优或良的天数,求X的分布列及数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆 的长轴长是短轴长的两倍,且过点C(2,1),点C关于原点O的对称点为点D.
(1)求椭圆E的方程;
(2)点P在椭圆E上,直线CP和DP的斜率都存在且不为0,试问直线CP和DP的斜率之积是否为定值?若是,求此定值;若不是,请说明理由:
(3)平行于CD的直线l交椭圆E于M,N两点,求△CMN面积的最大值,并求此时直线l的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆C的中心在原点,焦点在x轴上,离心率等于,它的一个顶点恰好是抛物线x2=8y的焦点.

(1)求椭圆C的标准方程;

(2)直线x=﹣2与椭圆交于P,Q两点,A,B是椭圆上位于直线x=﹣2两侧的动点,若直线AB的斜率为,求四边形APBQ面积的最大值.

查看答案和解析>>

同步练习册答案